Question
Simplify the expression
x3−x2r3−x2r2+xr2r3−rx2+rxr3+rr2x−rr2r3
Evaluate
(x−r)(x−r2)(x−r3)
Multiply the terms
More Steps

Evaluate
(x−r)(x−r2)
Apply the distributive property
x×x−xr2−rx−(−rr2)
Multiply the terms
x2−xr2−rx−(−rr2)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
x2−xr2−rx+rr2
(x2−xr2−rx+rr2)(x−r3)
Apply the distributive property
x2×x−x2r3−xr2x−(−xr2r3)−rx×x−(−rxr3)+rr2x−rr2r3
Multiply the terms
More Steps

Evaluate
x2×x
Use the product rule an×am=an+m to simplify the expression
x2+1
Add the numbers
x3
x3−x2r3−xr2x−(−xr2r3)−rx×x−(−rxr3)+rr2x−rr2r3
Multiply the terms
x3−x2r3−x2r2−(−xr2r3)−rx×x−(−rxr3)+rr2x−rr2r3
Multiply the terms
x3−x2r3−x2r2−(−xr2r3)−rx2−(−rxr3)+rr2x−rr2r3
Solution
x3−x2r3−x2r2+xr2r3−rx2+rxr3+rr2x−rr2r3
Show Solution
