Question
Simplify the expression
−x3y2z−x2z3y+x3z2y−y3z2x+y3x2z+y2z3x
Evaluate
(x−y)(y−z)(z−x)xyz
Multiply the terms
More Steps

Evaluate
(x−y)(y−z)
Apply the distributive property
xy−xz−y×y−(−yz)
Multiply the terms
xy−xz−y2−(−yz)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
xy−xz−y2+yz
(xy−xz−y2+yz)(z−x)xyz
Multiply the terms
More Steps

Evaluate
(xy−xz−y2+yz)(z−x)
Apply the distributive property
xyz−xyx−xz×z−(−xzx)−y2z−(−y2x)+yz×z−yzx
Multiply the terms
xyz−x2y−xz×z−(−xzx)−y2z−(−y2x)+yz×z−yzx
Multiply the terms
xyz−x2y−xz2−(−xzx)−y2z−(−y2x)+yz×z−yzx
Multiply the terms
xyz−x2y−xz2−(−x2z)−y2z−(−y2x)+yz×z−yzx
Multiply the terms
xyz−x2y−xz2−(−x2z)−y2z−(−y2x)+yz2−yzx
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
xyz−x2y−xz2+x2z−y2z+y2x+yz2−yzx
Subtract the terms
More Steps

Evaluate
xyz−yzx
Rewrite the expression
xyz−xyz
Collect like terms by calculating the sum or difference of their coefficients
(1−1)xyz
Subtract the numbers
0×xyz
Any expression multiplied by 0 equals 0
0
0−x2y−xz2+x2z−y2z+y2x+yz2
Removing 0 doesn't change the value,so remove it from the expression
−x2y−xz2+x2z−y2z+y2x+yz2
(−x2y−xz2+x2z−y2z+y2x+yz2)xyz
Multiply the terms
More Steps

Evaluate
(−x2y−xz2+x2z−y2z+y2x+yz2)x
Apply the distributive property
−x2yx−xz2x+x2zx−y2zx+y2x×x+yz2x
Multiply the terms
More Steps

Evaluate
x2×x
Use the product rule an×am=an+m to simplify the expression
x2+1
Add the numbers
x3
−x3y−xz2x+x2zx−y2zx+y2x×x+yz2x
Multiply the terms
−x3y−x2z2+x2zx−y2zx+y2x×x+yz2x
Multiply the terms
More Steps

Evaluate
x2×x
Use the product rule an×am=an+m to simplify the expression
x2+1
Add the numbers
x3
−x3y−x2z2+x3z−y2zx+y2x×x+yz2x
Multiply the terms
−x3y−x2z2+x3z−y2zx+y2x2+yz2x
(−x3y−x2z2+x3z−y2zx+y2x2+yz2x)yz
Multiply the terms
More Steps

Evaluate
(−x3y−x2z2+x3z−y2zx+y2x2+yz2x)y
Apply the distributive property
−x3y×y−x2z2y+x3zy−y2zxy+y2x2y+yz2xy
Multiply the terms
−x3y2−x2z2y+x3zy−y2zxy+y2x2y+yz2xy
Multiply the terms
More Steps

Evaluate
y2×y
Use the product rule an×am=an+m to simplify the expression
y2+1
Add the numbers
y3
−x3y2−x2z2y+x3zy−y3zx+y2x2y+yz2xy
Multiply the terms
More Steps

Evaluate
y2×y
Use the product rule an×am=an+m to simplify the expression
y2+1
Add the numbers
y3
−x3y2−x2z2y+x3zy−y3zx+y3x2+yz2xy
Multiply the terms
−x3y2−x2z2y+x3zy−y3zx+y3x2+y2z2x
(−x3y2−x2z2y+x3zy−y3zx+y3x2+y2z2x)z
Apply the distributive property
−x3y2z−x2z2yz+x3zyz−y3zxz+y3x2z+y2z2xz
Multiply the terms
More Steps

Evaluate
z2×z
Use the product rule an×am=an+m to simplify the expression
z2+1
Add the numbers
z3
−x3y2z−x2z3y+x3zyz−y3zxz+y3x2z+y2z2xz
Multiply the terms
−x3y2z−x2z3y+x3z2y−y3zxz+y3x2z+y2z2xz
Multiply the terms
−x3y2z−x2z3y+x3z2y−y3z2x+y3x2z+y2z2xz
Solution
More Steps

Evaluate
z2×z
Use the product rule an×am=an+m to simplify the expression
z2+1
Add the numbers
z3
−x3y2z−x2z3y+x3z2y−y3z2x+y3x2z+y2z3x
Show Solution
