Question
Simplify the expression
−x2y−xz2+x2z−y2z+y2x+yz2
Evaluate
(x−y)(y−z)(z−x)
Multiply the terms
More Steps

Evaluate
(x−y)(y−z)
Apply the distributive property
xy−xz−y×y−(−yz)
Multiply the terms
xy−xz−y2−(−yz)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
xy−xz−y2+yz
(xy−xz−y2+yz)(z−x)
Apply the distributive property
xyz−xyx−xz×z−(−xzx)−y2z−(−y2x)+yz×z−yzx
Multiply the terms
xyz−x2y−xz×z−(−xzx)−y2z−(−y2x)+yz×z−yzx
Multiply the terms
xyz−x2y−xz2−(−xzx)−y2z−(−y2x)+yz×z−yzx
Multiply the terms
xyz−x2y−xz2−(−x2z)−y2z−(−y2x)+yz×z−yzx
Multiply the terms
xyz−x2y−xz2−(−x2z)−y2z−(−y2x)+yz2−yzx
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
xyz−x2y−xz2+x2z−y2z+y2x+yz2−yzx
Subtract the terms
More Steps

Evaluate
xyz−yzx
Rewrite the expression
xyz−xyz
Collect like terms by calculating the sum or difference of their coefficients
(1−1)xyz
Subtract the numbers
0×xyz
Any expression multiplied by 0 equals 0
0
0−x2y−xz2+x2z−y2z+y2x+yz2
Solution
−x2y−xz2+x2z−y2z+y2x+yz2
Show Solution
