Question
Simplify the expression
7y4−316y3+4746y2−24956y+20519
Evaluate
(y−17)2(y−1)(7y−71)
Expand the expression
More Steps

Evaluate
(y−17)2
Use (a−b)2=a2−2ab+b2 to expand the expression
y2−2y×17+172
Calculate
y2−34y+289
(y2−34y+289)(y−1)(7y−71)
Multiply the terms
More Steps

Evaluate
(y2−34y+289)(y−1)
Apply the distributive property
y2×y−y2×1−34y×y−(−34y×1)+289y−289×1
Multiply the terms
More Steps

Evaluate
y2×y
Use the product rule an×am=an+m to simplify the expression
y2+1
Add the numbers
y3
y3−y2×1−34y×y−(−34y×1)+289y−289×1
Any expression multiplied by 1 remains the same
y3−y2−34y×y−(−34y×1)+289y−289×1
Multiply the terms
y3−y2−34y2−(−34y×1)+289y−289×1
Any expression multiplied by 1 remains the same
y3−y2−34y2−(−34y)+289y−289×1
Any expression multiplied by 1 remains the same
y3−y2−34y2−(−34y)+289y−289
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
y3−y2−34y2+34y+289y−289
Subtract the terms
More Steps

Evaluate
−y2−34y2
Collect like terms by calculating the sum or difference of their coefficients
(−1−34)y2
Subtract the numbers
−35y2
y3−35y2+34y+289y−289
Add the terms
More Steps

Evaluate
34y+289y
Collect like terms by calculating the sum or difference of their coefficients
(34+289)y
Add the numbers
323y
y3−35y2+323y−289
(y3−35y2+323y−289)(7y−71)
Apply the distributive property
y3×7y−y3×71−35y2×7y−(−35y2×71)+323y×7y−323y×71−289×7y−(−289×71)
Multiply the terms
More Steps

Evaluate
y3×7y
Use the commutative property to reorder the terms
7y3×y
Multiply the terms
More Steps

Evaluate
y3×y
Use the product rule an×am=an+m to simplify the expression
y3+1
Add the numbers
y4
7y4
7y4−y3×71−35y2×7y−(−35y2×71)+323y×7y−323y×71−289×7y−(−289×71)
Use the commutative property to reorder the terms
7y4−71y3−35y2×7y−(−35y2×71)+323y×7y−323y×71−289×7y−(−289×71)
Multiply the terms
More Steps

Evaluate
−35y2×7y
Multiply the numbers
−245y2×y
Multiply the terms
More Steps

Evaluate
y2×y
Use the product rule an×am=an+m to simplify the expression
y2+1
Add the numbers
y3
−245y3
7y4−71y3−245y3−(−35y2×71)+323y×7y−323y×71−289×7y−(−289×71)
Multiply the numbers
7y4−71y3−245y3−(−2485y2)+323y×7y−323y×71−289×7y−(−289×71)
Multiply the terms
More Steps

Evaluate
323y×7y
Multiply the numbers
2261y×y
Multiply the terms
2261y2
7y4−71y3−245y3−(−2485y2)+2261y2−323y×71−289×7y−(−289×71)
Multiply the numbers
7y4−71y3−245y3−(−2485y2)+2261y2−22933y−289×7y−(−289×71)
Multiply the numbers
7y4−71y3−245y3−(−2485y2)+2261y2−22933y−2023y−(−289×71)
Multiply the numbers
7y4−71y3−245y3−(−2485y2)+2261y2−22933y−2023y−(−20519)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
7y4−71y3−245y3+2485y2+2261y2−22933y−2023y+20519
Subtract the terms
More Steps

Evaluate
−71y3−245y3
Collect like terms by calculating the sum or difference of their coefficients
(−71−245)y3
Subtract the numbers
−316y3
7y4−316y3+2485y2+2261y2−22933y−2023y+20519
Add the terms
More Steps

Evaluate
2485y2+2261y2
Collect like terms by calculating the sum or difference of their coefficients
(2485+2261)y2
Add the numbers
4746y2
7y4−316y3+4746y2−22933y−2023y+20519
Solution
More Steps

Evaluate
−22933y−2023y
Collect like terms by calculating the sum or difference of their coefficients
(−22933−2023)y
Subtract the numbers
−24956y
7y4−316y3+4746y2−24956y+20519
Show Solution

Find the roots
y1=1,y2=771,y3=17
Alternative Form
y1=1,y2=10.1˙42857˙,y3=17
Evaluate
(y−17)2(y−1)(7y−71)
To find the roots of the expression,set the expression equal to 0
(y−17)2(y−1)(7y−71)=0
Separate the equation into 3 possible cases
(y−17)2=0y−1=07y−71=0
Solve the equation
More Steps

Evaluate
(y−17)2=0
The only way a power can be 0 is when the base equals 0
y−17=0
Move the constant to the right-hand side and change its sign
y=0+17
Removing 0 doesn't change the value,so remove it from the expression
y=17
y=17y−1=07y−71=0
Solve the equation
More Steps

Evaluate
y−1=0
Move the constant to the right-hand side and change its sign
y=0+1
Removing 0 doesn't change the value,so remove it from the expression
y=1
y=17y=17y−71=0
Solve the equation
More Steps

Evaluate
7y−71=0
Move the constant to the right-hand side and change its sign
7y=0+71
Removing 0 doesn't change the value,so remove it from the expression
7y=71
Divide both sides
77y=771
Divide the numbers
y=771
y=17y=1y=771
Solution
y1=1,y2=771,y3=17
Alternative Form
y1=1,y2=10.1˙42857˙,y3=17
Show Solution
