Question
Simplify the expression
−182a6+3
Evaluate
−32×6a5a−61
Multiply the terms
More Steps

Multiply the terms
−32×6a5a
Multiply the terms
More Steps

Evaluate
32×6a5a
Multiply the terms
9a5a
Multiply the terms
9a5×a
Multiply the terms
9a6
−9a6
−9a6−61
Reduce fractions to a common denominator
−9×2a6×2−6×33
Multiply the numbers
−18a6×2−6×33
Multiply the numbers
−18a6×2−183
Write all numerators above the common denominator
18−a6×2−3
Use the commutative property to reorder the terms
18−2a6−3
Solution
−182a6+3
Show Solution

Find the roots
a1=−462592−4696i,a2=462592+4696i
Alternative Form
a1≈−0.926572−0.534957i,a2≈0.926572+0.534957i
Evaluate
−32×6a5a−61
To find the roots of the expression,set the expression equal to 0
−32×6a5a−61=0
Multiply the terms
More Steps

Multiply the terms
32×6a5a
Multiply the terms
More Steps

Evaluate
32×6a5
Cancel out the common factor 2
31×3a5
Multiply the terms
3×3a5
Multiply the terms
9a5
9a5a
Multiply the terms
9a5×a
Multiply the terms
More Steps

Evaluate
a5×a
Use the product rule an×am=an+m to simplify the expression
a5+1
Add the numbers
a6
9a6
−9a6−61=0
Subtract the terms
More Steps

Simplify
−9a6−61
Reduce fractions to a common denominator
−9×2a6×2−6×33
Multiply the numbers
−18a6×2−6×33
Multiply the numbers
−18a6×2−183
Write all numerators above the common denominator
18−a6×2−3
Use the commutative property to reorder the terms
18−2a6−3
Use b−a=−ba=−ba to rewrite the fraction
−182a6+3
−182a6+3=0
Simplify
−2a6−3=0
Move the constant to the right side
−2a6=3
Change the signs on both sides of the equation
2a6=−3
Divide both sides
22a6=2−3
Divide the numbers
a6=2−3
Use b−a=−ba=−ba to rewrite the fraction
a6=−23
Take the root of both sides of the equation and remember to use both positive and negative roots
a=±6−23
Simplify the expression
More Steps

Evaluate
6−23
To take a root of a fraction,take the root of the numerator and denominator separately
626−3
Simplify the radical expression
More Steps

Evaluate
6−3
Rewrite the expression
63×(23+21i)
Apply the distributive property
63×23+63×21i
Multiply the numbers
2332+63×21i
Multiply the numbers
2332+263i
Evaluate the power
239+263i
62239+263i
Simplify
26239+26263i
Rearrange the numbers
More Steps

Evaluate
26239
Multiply by the Conjugate
262×62539×625
Simplify
262×62539×632
Multiply the numbers
262×62562592
Multiply the numbers
462592
462592+26263i
Rearrange the numbers
More Steps

Evaluate
26263
Multiply by the Conjugate
262×62563×625
Simplify
262×62563×632
Multiply the numbers
262×625696
Multiply the numbers
4696
462592+4696i
a=±(462592+4696i)
Separate the equation into 2 possible cases
a=462592+4696ia=−462592−4696i
Solution
a1=−462592−4696i,a2=462592+4696i
Alternative Form
a1≈−0.926572−0.534957i,a2≈0.926572+0.534957i
Show Solution
