Question
Simplify the expression
71x+32
Evaluate
−52(−145x−610)
Cancel out the common factor 2
−52(−145x−35)
Multiply the terms
More Steps

Evaluate
52(−145x−35)
Apply the distributive property
52(−145x)−52×35
Multiply the numbers
More Steps

Evaluate
52(−145)
Multiplying or dividing an odd number of negative terms equals a negative
−52×145
Reduce the numbers
−51×75
Reduce the numbers
−1×71
Multiply the numbers
−71
−71x−52×35
Multiply the numbers
More Steps

Evaluate
52×35
Reduce the numbers
2×31
Multiply the numbers
32
−71x−32
−(−71x−32)
Solution
71x+32
Show Solution

Factor the expression
211(3x+14)
Evaluate
−52(−145x−610)
Cancel out the common factor 2
−52(−145x−35)
Factor the expression
−52(−425)(3x+14)
Solution
211(3x+14)
Show Solution

Find the roots
x=−314
Alternative Form
x=−4.6˙
Evaluate
−52(−145x−610)
To find the roots of the expression,set the expression equal to 0
−52(−145x−610)=0
Cancel out the common factor 2
−52(−145x−35)=0
Multiply the terms
More Steps

Evaluate
52(−145x−35)
Apply the distributive property
52(−145x)−52×35
Multiply the numbers
More Steps

Evaluate
52(−145)
Multiplying or dividing an odd number of negative terms equals a negative
−52×145
Reduce the numbers
−51×75
Reduce the numbers
−1×71
Multiply the numbers
−71
−71x−52×35
Multiply the numbers
More Steps

Evaluate
52×35
Reduce the numbers
2×31
Multiply the numbers
32
−71x−32
−(−71x−32)=0
Calculate
71x+32=0
Move the constant to the right-hand side and change its sign
71x=0−32
Removing 0 doesn't change the value,so remove it from the expression
71x=−32
Multiply by the reciprocal
71x×7=−32×7
Multiply
x=−32×7
Solution
More Steps

Evaluate
−32×7
Multiply the numbers
−32×7
Multiply the numbers
−314
x=−314
Alternative Form
x=−4.6˙
Show Solution
