Question
Simplify the expression
−x4y6+4x4y5−4x4y4+2x3y6−8x3y5+8x3y4−x2y6+4x2y5−4x2y4
Evaluate
−((x×1)2(y2)2((x−1)2(y−2)2))
Remove the parentheses
−((x×1)2(y2)2(x−1)2(y−2)2)
Multiply the exponents
−((x×1)2y2×2(x−1)2(y−2)2)
Any expression multiplied by 1 remains the same
−(x2y2×2(x−1)2(y−2)2)
Multiply the numbers
−(x2y4(x−1)2(y−2)2)
Calculate
−x2y4(x−1)2(y−2)2
Expand the expression
More Steps

Evaluate
(x−1)2
Use (a−b)2=a2−2ab+b2 to expand the expression
x2−2x×1+12
Calculate
x2−2x+1
−x2y4(x2−2x+1)(y−2)2
Expand the expression
More Steps

Evaluate
(y−2)2
Use (a−b)2=a2−2ab+b2 to expand the expression
y2−2y×2+22
Calculate
y2−4y+4
−x2y4(x2−2x+1)(y2−4y+4)
Multiply the terms
More Steps

Evaluate
−x2y4(x2−2x+1)
Apply the distributive property
−x2y4x2−(−x2y4×2x)−x2y4×1
Multiply the terms
More Steps

Evaluate
x2×x2
Use the product rule an×am=an+m to simplify the expression
x2+2
Add the numbers
x4
−x4y4−(−x2y4×2x)−x2y4×1
Multiply the terms
More Steps

Evaluate
−x2y4×2x
Multiply the numbers
−2x2y4x
Multiply the terms
−2x3y4
−x4y4−(−2x3y4)−x2y4×1
Any expression multiplied by 1 remains the same
−x4y4−(−2x3y4)−x2y4
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−x4y4+2x3y4−x2y4
(−x4y4+2x3y4−x2y4)(y2−4y+4)
Apply the distributive property
−x4y4×y2−(−x4y4×4y)−x4y4×4+2x3y4×y2−2x3y4×4y+2x3y4×4−x2y4×y2−(−x2y4×4y)−x2y4×4
Multiply the terms
More Steps

Evaluate
y4×y2
Use the product rule an×am=an+m to simplify the expression
y4+2
Add the numbers
y6
−x4y6−(−x4y4×4y)−x4y4×4+2x3y4×y2−2x3y4×4y+2x3y4×4−x2y4×y2−(−x2y4×4y)−x2y4×4
Multiply the terms
More Steps

Evaluate
−x4y4×4y
Multiply the numbers
−4x4y4×y
Multiply the terms
More Steps

Evaluate
y4×y
Use the product rule an×am=an+m to simplify the expression
y4+1
Add the numbers
y5
−4x4y5
−x4y6−(−4x4y5)−x4y4×4+2x3y4×y2−2x3y4×4y+2x3y4×4−x2y4×y2−(−x2y4×4y)−x2y4×4
Use the commutative property to reorder the terms
−x4y6−(−4x4y5)−4x4y4+2x3y4×y2−2x3y4×4y+2x3y4×4−x2y4×y2−(−x2y4×4y)−x2y4×4
Multiply the terms
More Steps

Evaluate
y4×y2
Use the product rule an×am=an+m to simplify the expression
y4+2
Add the numbers
y6
−x4y6−(−4x4y5)−4x4y4+2x3y6−2x3y4×4y+2x3y4×4−x2y4×y2−(−x2y4×4y)−x2y4×4
Multiply the terms
More Steps

Evaluate
2x3y4×4y
Multiply the numbers
8x3y4×y
Multiply the terms
More Steps

Evaluate
y4×y
Use the product rule an×am=an+m to simplify the expression
y4+1
Add the numbers
y5
8x3y5
−x4y6−(−4x4y5)−4x4y4+2x3y6−8x3y5+2x3y4×4−x2y4×y2−(−x2y4×4y)−x2y4×4
Multiply the numbers
−x4y6−(−4x4y5)−4x4y4+2x3y6−8x3y5+8x3y4−x2y4×y2−(−x2y4×4y)−x2y4×4
Multiply the terms
More Steps

Evaluate
y4×y2
Use the product rule an×am=an+m to simplify the expression
y4+2
Add the numbers
y6
−x4y6−(−4x4y5)−4x4y4+2x3y6−8x3y5+8x3y4−x2y6−(−x2y4×4y)−x2y4×4
Multiply the terms
More Steps

Evaluate
−x2y4×4y
Multiply the numbers
−4x2y4×y
Multiply the terms
More Steps

Evaluate
y4×y
Use the product rule an×am=an+m to simplify the expression
y4+1
Add the numbers
y5
−4x2y5
−x4y6−(−4x4y5)−4x4y4+2x3y6−8x3y5+8x3y4−x2y6−(−4x2y5)−x2y4×4
Use the commutative property to reorder the terms
−x4y6−(−4x4y5)−4x4y4+2x3y6−8x3y5+8x3y4−x2y6−(−4x2y5)−4x2y4
Solution
−x4y6+4x4y5−4x4y4+2x3y6−8x3y5+8x3y4−x2y6+4x2y5−4x2y4
Show Solution
