Question
Simplify the expression
−10a3+20a2
Evaluate
−2a2(a−2)×5
Multiply the terms
−10a2(a−2)
Apply the distributive property
−10a2×a−(−10a2×2)
Multiply the terms
More Steps

Evaluate
a2×a
Use the product rule an×am=an+m to simplify the expression
a2+1
Add the numbers
a3
−10a3−(−10a2×2)
Multiply the numbers
−10a3−(−20a2)
Solution
−10a3+20a2
Show Solution

Find the roots
a1=0,a2=2
Evaluate
−(2a2)(a−2)×5
To find the roots of the expression,set the expression equal to 0
−(2a2)(a−2)×5=0
Multiply the terms
−2a2(a−2)×5=0
Multiply the terms
−10a2(a−2)=0
Change the sign
10a2(a−2)=0
Elimination the left coefficient
a2(a−2)=0
Separate the equation into 2 possible cases
a2=0a−2=0
The only way a power can be 0 is when the base equals 0
a=0a−2=0
Solve the equation
More Steps

Evaluate
a−2=0
Move the constant to the right-hand side and change its sign
a=0+2
Removing 0 doesn't change the value,so remove it from the expression
a=2
a=0a=2
Solution
a1=0,a2=2
Show Solution
