Question
Simplify the expression
−2x3+5x2
Evaluate
−(2x−5)x2
Multiply the terms
−x2(2x−5)
Apply the distributive property
−x2×2x−(−x2×5)
Multiply the terms
More Steps

Evaluate
−x2×2x
Multiply the numbers
−2x2×x
Multiply the terms
More Steps

Evaluate
x2×x
Use the product rule an×am=an+m to simplify the expression
x2+1
Add the numbers
x3
−2x3
−2x3−(−x2×5)
Use the commutative property to reorder the terms
−2x3−(−5x2)
Solution
−2x3+5x2
Show Solution

Find the roots
x1=0,x2=25
Alternative Form
x1=0,x2=2.5
Evaluate
−(2x−5)(x2)
To find the roots of the expression,set the expression equal to 0
−(2x−5)(x2)=0
Calculate
−(2x−5)x2=0
Multiply the terms
−x2(2x−5)=0
Change the sign
x2(2x−5)=0
Separate the equation into 2 possible cases
x2=02x−5=0
The only way a power can be 0 is when the base equals 0
x=02x−5=0
Solve the equation
More Steps

Evaluate
2x−5=0
Move the constant to the right-hand side and change its sign
2x=0+5
Removing 0 doesn't change the value,so remove it from the expression
2x=5
Divide both sides
22x=25
Divide the numbers
x=25
x=0x=25
Solution
x1=0,x2=25
Alternative Form
x1=0,x2=2.5
Show Solution
