Question
Simplify the expression
(−500+500i)vx+(500−500i)v2x
Evaluate
−i−i2v−v2×x×1000
Evaluate the power
−i−(−1)v−v2×x×1000
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−i+1v−v2×x×1000
Divide the terms
More Steps

Evaluate
i+1v−v2
Multiply numerator and denominator by conjugate of denominator
(i+1)(−i+1)(v−v2)(−i+1)
Simplify the expression
(i+1)(−i+1)(−i+1)(v−v2)
Simplify the expression
More Steps

Evaluate
(i+1)(−i+1)
Use (a+b)(a−b)=a2−b2 to simplify the product
12−i2
Evaluate the power
1−i2
Evaluate the power
1−(−1)
Calculate
2
2(−i+1)(v−v2)
−2(−i+1)(v−v2)x×1000
Multiply the terms
More Steps

Multiply the terms
2(−i+1)(v−v2)x×1000
Multiply the terms
2(−i+1)(v−v2)x×1000
Cancel out the common factor 2
(−i+1)(v−v2)x×500
Multiply the terms
More Steps

Evaluate
(−i+1)×500
Apply the distributive property
−i×500+500
Multiply the numbers
−500i+500
Reorder the terms
500−500i
(500−500i)(v−v2)x
−(500−500i)(v−v2)x
Calculate
(−500+500i)(v−v2)x
Multiply the terms
More Steps

Evaluate
(−500+500i)(v−v2)
Apply the distributive property
(−500+500i)v−(−500+500i)v2
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
(−500+500i)v+(500−500i)v2
((−500+500i)v+(500−500i)v2)x
Solution
(−500+500i)vx+(500−500i)v2x
Show Solution
