Question
Simplify the expression
−23−6x6
Evaluate
−21×3−4x5×23x
Multiply the numbers
−23−4x5×23x
Solution
More Steps

Multiply the terms
4x5×23x
Multiply the terms
More Steps

Evaluate
4×23
Reduce the numbers
2×3
Multiply the numbers
6
6x5×x
Multiply the terms with the same base by adding their exponents
6x5+1
Add the numbers
6x6
−23−6x6
Show Solution

Factor the expression
−23(1+4x6)
Evaluate
−21×3−4x5×23x
Multiply the numbers
−23−4x5×23x
Multiply
More Steps

Multiply the terms
4x5×23x
Multiply the terms
More Steps

Evaluate
4×23
Reduce the numbers
2×3
Multiply the numbers
6
6x5×x
Multiply the terms with the same base by adding their exponents
6x5+1
Add the numbers
6x6
−23−6x6
Solution
−23(1+4x6)
Show Solution

Find the roots
x1=−46432+434i,x2=46432−434i
Alternative Form
x1≈−0.687365+0.39685i,x2≈0.687365−0.39685i
Evaluate
−21×3−4x5×23x
To find the roots of the expression,set the expression equal to 0
−21×3−4x5×23x=0
Multiply the numbers
−23−4x5×23x=0
Multiply
More Steps

Multiply the terms
4x5×23x
Multiply the terms
More Steps

Evaluate
4×23
Reduce the numbers
2×3
Multiply the numbers
6
6x5×x
Multiply the terms with the same base by adding their exponents
6x5+1
Add the numbers
6x6
−23−6x6=0
Move the constant to the right-hand side and change its sign
−6x6=0+23
Add the terms
−6x6=23
Change the signs on both sides of the equation
6x6=−23
Multiply by the reciprocal
6x6×61=−23×61
Multiply
x6=−23×61
Multiply
More Steps

Evaluate
−23×61
Reduce the numbers
−21×21
To multiply the fractions,multiply the numerators and denominators separately
−2×21
Multiply the numbers
−41
x6=−41
Take the root of both sides of the equation and remember to use both positive and negative roots
x=±6−41
Simplify the expression
More Steps

Evaluate
6−41
To take a root of a fraction,take the root of the numerator and denominator separately
6−461
Simplify the radical expression
6−41
Simplify the radical expression
More Steps

Evaluate
6−4
Rewrite the expression
32×(23+21i)
Apply the distributive property
32×23+32×21i
Multiply the numbers
26108+32×21i
Multiply the numbers
26108+232i
26108+232i1
Multiply by the Conjugate
(26108+232i)(26108−232i)26108−232i
Calculate
More Steps

Evaluate
(26108+232i)(26108−232i)
Use (a+b)(a−b)=a2−b2 to simplify the product
(26108)2−(232i)2
Evaluate the power
4334−(232i)2
Evaluate the power
4334−(−434)
Calculate
34
3426108−232i
Simplify
2346108−2321i
Rearrange the numbers
More Steps

Evaluate
2346108
Multiply by the Conjugate
234×3426108×342
Simplify
234×3426108×232
Multiply the numbers
234×34226432
Multiply the numbers
2326432
Reduce the fraction
226432
226432−2321i
Rearrange the numbers
More Steps

Evaluate
−2321
Multiply by the Conjugate
232×322−322
Simplify
232×322−34
Multiply the numbers
4−34
Calculate
−434
226432−434i
x=±(226432−434i)
Separate the equation into 2 possible cases
x=226432−434ix=−226432+434i
Calculate
x=46432−434ix=−226432+434i
Calculate
x=46432−434ix=−46432+434i
Solution
x1=−46432+434i,x2=46432−434i
Alternative Form
x1≈−0.687365+0.39685i,x2≈0.687365−0.39685i
Show Solution
