Question
Simplify the expression
−10p−7p5
Evaluate
−10p−7p4×p
Solution
More Steps

Evaluate
7p4×p
Multiply the terms with the same base by adding their exponents
7p4+1
Add the numbers
7p5
−10p−7p5
Show Solution

Factor the expression
−p(10+7p4)
Evaluate
−10p−7p4×p
Multiply
More Steps

Evaluate
7p4×p
Multiply the terms with the same base by adding their exponents
7p4+1
Add the numbers
7p5
−10p−7p5
Rewrite the expression
−p×10−p×7p4
Solution
−p(10+7p4)
Show Solution

Find the roots
p1=−14413720−14413720i,p2=14413720+14413720i,p3=0
Alternative Form
p1≈−0.773055−0.773055i,p2≈0.773055+0.773055i,p3=0
Evaluate
−10p−7p4×p
To find the roots of the expression,set the expression equal to 0
−10p−7p4×p=0
Multiply
More Steps

Multiply the terms
7p4×p
Multiply the terms with the same base by adding their exponents
7p4+1
Add the numbers
7p5
−10p−7p5=0
Factor the expression
−p(10+7p4)=0
Divide both sides
p(10+7p4)=0
Separate the equation into 2 possible cases
p=010+7p4=0
Solve the equation
More Steps

Evaluate
10+7p4=0
Move the constant to the right-hand side and change its sign
7p4=0−10
Removing 0 doesn't change the value,so remove it from the expression
7p4=−10
Divide both sides
77p4=7−10
Divide the numbers
p4=7−10
Use b−a=−ba=−ba to rewrite the fraction
p4=−710
Take the root of both sides of the equation and remember to use both positive and negative roots
p=±4−710
Simplify the expression
More Steps

Evaluate
4−710
To take a root of a fraction,take the root of the numerator and denominator separately
474−10
Simplify the radical expression
472440+2440i
Simplify
247440+247440i
Rearrange the numbers
14413720+247440i
Rearrange the numbers
14413720+14413720i
p=±(14413720+14413720i)
Separate the equation into 2 possible cases
p=14413720+14413720ip=−14413720−14413720i
p=0p=14413720+14413720ip=−14413720−14413720i
Solution
p1=−14413720−14413720i,p2=14413720+14413720i,p3=0
Alternative Form
p1≈−0.773055−0.773055i,p2≈0.773055+0.773055i,p3=0
Show Solution
