Question Simplify the expression −12x2+72x−108 Evaluate −12(x−3)2Expand the expression More Steps Evaluate (x−3)2Use (a−b)2=a2−2ab+b2 to expand the expression x2−2x×3+32Calculate x2−6x+9 −12(x2−6x+9)Apply the distributive property −12x2−(−12×6x)−12×9Multiply the numbers −12x2−(−72x)−12×9Multiply the numbers −12x2−(−72x)−108Solution −12x2+72x−108 Show Solution Find the roots x=3 Evaluate −12(x−3)2To find the roots of the expression,set the expression equal to 0 −12(x−3)2=0Change the sign 12(x−3)2=0Rewrite the expression (x−3)2=0The only way a power can be 0 is when the base equals 0 x−3=0Move the constant to the right-hand side and change its sign x=0+3Solution x=3 Show Solution