Question
Simplify the expression
−38137x−387x3
Evaluate
−137x×381−1×x3×387
Multiply the numbers
−38137x−1×x3×387
Solution
More Steps

Multiply the terms
1×x3×387
Rewrite the expression
x3×387
Use the commutative property to reorder the terms
387x3
−38137x−387x3
Show Solution

Factor the expression
−381x(137+7x2)
Evaluate
−137x×381−1×x3×387
Multiply the numbers
−38137x−1×x3×387
Multiply the terms
More Steps

Multiply the terms
1×x3×387
Rewrite the expression
x3×387
Use the commutative property to reorder the terms
387x3
−38137x−387x3
Rewrite the expression
−381x×137−381x×7x2
Solution
−381x(137+7x2)
Show Solution

Find the roots
x1=−7959i,x2=7959i,x3=0
Alternative Form
x1≈−4.423961i,x2≈4.423961i,x3=0
Evaluate
−137x×381−1×x3×387
To find the roots of the expression,set the expression equal to 0
−137x×381−1×x3×387=0
Multiply the numbers
−38137x−1×x3×387=0
Multiply the terms
More Steps

Multiply the terms
1×x3×387
Rewrite the expression
x3×387
Use the commutative property to reorder the terms
387x3
−38137x−387x3=0
Factor the expression
−144438x(137+7x2)=0
Divide both sides
x(137+7x2)=0
Separate the equation into 2 possible cases
x=0137+7x2=0
Solve the equation
More Steps

Evaluate
137+7x2=0
Move the constant to the right-hand side and change its sign
7x2=0−137
Removing 0 doesn't change the value,so remove it from the expression
7x2=−137
Divide both sides
77x2=7−137
Divide the numbers
x2=7−137
Use b−a=−ba=−ba to rewrite the fraction
x2=−7137
Take the root of both sides of the equation and remember to use both positive and negative roots
x=±−7137
Simplify the expression
More Steps

Evaluate
−7137
Evaluate the power
7137×−1
Evaluate the power
7137×i
Evaluate the power
7959i
x=±7959i
Separate the equation into 2 possible cases
x=7959ix=−7959i
x=0x=7959ix=−7959i
Solution
x1=−7959i,x2=7959i,x3=0
Alternative Form
x1≈−4.423961i,x2≈4.423961i,x3=0
Show Solution
