Question
Solve the equation(The real numbers system)
p∈/R
Alternative Form
No real solution
Evaluate
−17p−p−14p×11p−1=20
Simplify
More Steps

Evaluate
−17p−p−14p×11p−1
Multiply
More Steps

Multiply the terms
−14p×11p
Multiply the terms
−154p×p
Multiply the terms
−154p2
−17p−p−154p2−1
Subtract the terms
More Steps

Evaluate
−17p−p
Collect like terms by calculating the sum or difference of their coefficients
(−17−1)p
Subtract the numbers
−18p
−18p−154p2−1
−18p−154p2−1=20
Move the expression to the left side
−18p−154p2−21=0
Rewrite in standard form
−154p2−18p−21=0
Multiply both sides
154p2+18p+21=0
Substitute a=154,b=18 and c=21 into the quadratic formula p=2a−b±b2−4ac
p=2×154−18±182−4×154×21
Simplify the expression
p=308−18±182−4×154×21
Simplify the expression
More Steps

Evaluate
182−4×154×21
Multiply the terms
More Steps

Multiply the terms
4×154×21
Multiply the terms
616×21
Multiply the numbers
12936
182−12936
Evaluate the power
324−12936
Subtract the numbers
−12612
p=308−18±−12612
Solution
p∈/R
Alternative Form
No real solution
Show Solution

Solve the equation(The complex numbers system)
Solve using the quadratic formula in the complex numbers system
Solve by completing the square in the complex numbers system
Solve using the PQ formula in the complex numbers system
p1=−1549−1543153i,p2=−1549+1543153i
Alternative Form
p1≈−0.05˙84415˙−0.364621i,p2≈−0.05˙84415˙+0.364621i
Evaluate
−17p−p−14p×11p−1=20
Simplify
More Steps

Evaluate
−17p−p−14p×11p−1
Multiply
More Steps

Multiply the terms
−14p×11p
Multiply the terms
−154p×p
Multiply the terms
−154p2
−17p−p−154p2−1
Subtract the terms
More Steps

Evaluate
−17p−p
Collect like terms by calculating the sum or difference of their coefficients
(−17−1)p
Subtract the numbers
−18p
−18p−154p2−1
−18p−154p2−1=20
Move the expression to the left side
−18p−154p2−21=0
Rewrite in standard form
−154p2−18p−21=0
Multiply both sides
154p2+18p+21=0
Substitute a=154,b=18 and c=21 into the quadratic formula p=2a−b±b2−4ac
p=2×154−18±182−4×154×21
Simplify the expression
p=308−18±182−4×154×21
Simplify the expression
More Steps

Evaluate
182−4×154×21
Multiply the terms
More Steps

Multiply the terms
4×154×21
Multiply the terms
616×21
Multiply the numbers
12936
182−12936
Evaluate the power
324−12936
Subtract the numbers
−12612
p=308−18±−12612
Simplify the radical expression
More Steps

Evaluate
−12612
Evaluate the power
12612×−1
Evaluate the power
12612×i
Evaluate the power
More Steps

Evaluate
12612
Write the expression as a product where the root of one of the factors can be evaluated
4×3153
Write the number in exponential form with the base of 2
22×3153
The root of a product is equal to the product of the roots of each factor
22×3153
Reduce the index of the radical and exponent with 2
23153
23153×i
p=308−18±23153×i
Separate the equation into 2 possible cases
p=308−18+23153×ip=308−18−23153×i
Simplify the expression
More Steps

Evaluate
p=308−18+23153×i
Divide the terms
More Steps

Evaluate
308−18+23153×i
Rewrite the expression
3082(−9+3153×i)
Cancel out the common factor 2
154−9+3153×i
Use b−a=−ba=−ba to rewrite the fraction
−1549−3153×i
Simplify
−1549+1543153i
p=−1549+1543153i
p=−1549+1543153ip=308−18−23153×i
Simplify the expression
More Steps

Evaluate
p=308−18−23153×i
Divide the terms
More Steps

Evaluate
308−18−23153×i
Rewrite the expression
3082(−9−3153×i)
Cancel out the common factor 2
154−9−3153×i
Use b−a=−ba=−ba to rewrite the fraction
−1549+3153×i
Simplify
−1549−1543153i
p=−1549−1543153i
p=−1549+1543153ip=−1549−1543153i
Solution
p1=−1549−1543153i,p2=−1549+1543153i
Alternative Form
p1≈−0.05˙84415˙−0.364621i,p2≈−0.05˙84415˙+0.364621i
Show Solution
