Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
x1=63−3,x2=63+3
Alternative Form
x1≈0.211325,x2≈0.788675
Evaluate
−2(3x−3)×4x−4=0
Multiply
More Steps

Evaluate
−2(3x−3)×4x
Multiply the terms
−8(3x−3)x
Multiply the terms
−8x(3x−3)
−8x(3x−3)−4=0
Expand the expression
More Steps

Evaluate
−8x(3x−3)
Apply the distributive property
−8x×3x−(−8x×3)
Multiply the terms
More Steps

Evaluate
−8x×3x
Multiply the numbers
−24x×x
Multiply the terms
−24x2
−24x2−(−8x×3)
Multiply the numbers
−24x2−(−24x)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−24x2+24x
−24x2+24x−4=0
Multiply both sides
24x2−24x+4=0
Substitute a=24,b=−24 and c=4 into the quadratic formula x=2a−b±b2−4ac
x=2×2424±(−24)2−4×24×4
Simplify the expression
x=4824±(−24)2−4×24×4
Simplify the expression
More Steps

Evaluate
(−24)2−4×24×4
Multiply the terms
More Steps

Multiply the terms
4×24×4
Multiply the terms
96×4
Multiply the numbers
384
(−24)2−384
Rewrite the expression
242−384
Evaluate the power
576−384
Subtract the numbers
192
x=4824±192
Simplify the radical expression
More Steps

Evaluate
192
Write the expression as a product where the root of one of the factors can be evaluated
64×3
Write the number in exponential form with the base of 8
82×3
The root of a product is equal to the product of the roots of each factor
82×3
Reduce the index of the radical and exponent with 2
83
x=4824±83
Separate the equation into 2 possible cases
x=4824+83x=4824−83
Simplify the expression
More Steps

Evaluate
x=4824+83
Divide the terms
More Steps

Evaluate
4824+83
Rewrite the expression
488(3+3)
Cancel out the common factor 8
63+3
x=63+3
x=63+3x=4824−83
Simplify the expression
More Steps

Evaluate
x=4824−83
Divide the terms
More Steps

Evaluate
4824−83
Rewrite the expression
488(3−3)
Cancel out the common factor 8
63−3
x=63−3
x=63+3x=63−3
Solution
x1=63−3,x2=63+3
Alternative Form
x1≈0.211325,x2≈0.788675
Show Solution
