Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
x1=−18710+4427,x2=187−10+4427
Alternative Form
x1≈−0.495486,x2≈0.388534
Evaluate
−2(5x−9)×2=−187(−x2)
Multiply the terms
−4(5x−9)=−187(−x2)
Multiply the numbers
−4(5x−9)=187x2
Swap the sides
187x2=−4(5x−9)
Expand the expression
More Steps

Evaluate
−4(5x−9)
Apply the distributive property
−4×5x−(−4×9)
Multiply the numbers
−20x−(−4×9)
Multiply the numbers
−20x−(−36)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−20x+36
187x2=−20x+36
Move the expression to the left side
187x2+20x−36=0
Substitute a=187,b=20 and c=−36 into the quadratic formula x=2a−b±b2−4ac
x=2×187−20±202−4×187(−36)
Simplify the expression
x=374−20±202−4×187(−36)
Simplify the expression
More Steps

Evaluate
202−4×187(−36)
Multiply
More Steps

Multiply the terms
4×187(−36)
Rewrite the expression
−4×187×36
Multiply the terms
−26928
202−(−26928)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
202+26928
Evaluate the power
400+26928
Add the numbers
27328
x=374−20±27328
Simplify the radical expression
More Steps

Evaluate
27328
Write the expression as a product where the root of one of the factors can be evaluated
64×427
Write the number in exponential form with the base of 8
82×427
The root of a product is equal to the product of the roots of each factor
82×427
Reduce the index of the radical and exponent with 2
8427
x=374−20±8427
Separate the equation into 2 possible cases
x=374−20+8427x=374−20−8427
Simplify the expression
More Steps

Evaluate
x=374−20+8427
Divide the terms
More Steps

Evaluate
374−20+8427
Rewrite the expression
3742(−10+4427)
Cancel out the common factor 2
187−10+4427
x=187−10+4427
x=187−10+4427x=374−20−8427
Simplify the expression
More Steps

Evaluate
x=374−20−8427
Divide the terms
More Steps

Evaluate
374−20−8427
Rewrite the expression
3742(−10−4427)
Cancel out the common factor 2
187−10−4427
Use b−a=−ba=−ba to rewrite the fraction
−18710+4427
x=−18710+4427
x=187−10+4427x=−18710+4427
Solution
x1=−18710+4427,x2=187−10+4427
Alternative Form
x1≈−0.495486,x2≈0.388534
Show Solution
