Question
Simplify the expression
−2p8−35p
Evaluate
−2(p4)2−35p
Multiply the exponents
−2p4×2−35p
Solution
−2p8−35p
Show Solution

Factor the expression
−p(2p7+35)
Evaluate
−2(p4)2−35p
Evaluate the power
More Steps

Evaluate
(p4)2
Transform the expression
p4×2
Multiply the numbers
p8
−2p8−35p
Rewrite the expression
−p×2p7−p×35
Solution
−p(2p7+35)
Show Solution

Find the roots
p1=−272240,p2=0
Alternative Form
p1≈−1.50514,p2=0
Evaluate
−2(p4)2−35p
To find the roots of the expression,set the expression equal to 0
−2(p4)2−35p=0
Evaluate the power
More Steps

Evaluate
(p4)2
Transform the expression
p4×2
Multiply the numbers
p8
−2p8−35p=0
Factor the expression
−p(2p7+35)=0
Divide both sides
p(2p7+35)=0
Separate the equation into 2 possible cases
p=02p7+35=0
Solve the equation
More Steps

Evaluate
2p7+35=0
Move the constant to the right-hand side and change its sign
2p7=0−35
Removing 0 doesn't change the value,so remove it from the expression
2p7=−35
Divide both sides
22p7=2−35
Divide the numbers
p7=2−35
Use b−a=−ba=−ba to rewrite the fraction
p7=−235
Take the 7-th root on both sides of the equation
7p7=7−235
Calculate
p=7−235
Simplify the root
More Steps

Evaluate
7−235
An odd root of a negative radicand is always a negative
−7235
To take a root of a fraction,take the root of the numerator and denominator separately
−72735
Multiply by the Conjugate
72×726−735×726
Simplify
72×726−735×764
Multiply the numbers
72×726−72240
Multiply the numbers
2−72240
Calculate
−272240
p=−272240
p=0p=−272240
Solution
p1=−272240,p2=0
Alternative Form
p1≈−1.50514,p2=0
Show Solution
