Question
Solve the equation(The real numbers system)
x∈/R
Alternative Form
No real solution
Evaluate
−2(x−6)=−4x2×4
Multiply the terms
−2(x−6)=−16x2
Swap the sides
−16x2=−2(x−6)
Expand the expression
More Steps

Evaluate
−2(x−6)
Apply the distributive property
−2x−(−2×6)
Multiply the numbers
−2x−(−12)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−2x+12
−16x2=−2x+12
Move the expression to the left side
−16x2+2x−12=0
Multiply both sides
16x2−2x+12=0
Substitute a=16,b=−2 and c=12 into the quadratic formula x=2a−b±b2−4ac
x=2×162±(−2)2−4×16×12
Simplify the expression
x=322±(−2)2−4×16×12
Simplify the expression
More Steps

Evaluate
(−2)2−4×16×12
Multiply the terms
More Steps

Multiply the terms
4×16×12
Multiply the terms
64×12
Multiply the numbers
768
(−2)2−768
Rewrite the expression
22−768
Evaluate the power
4−768
Subtract the numbers
−764
x=322±−764
Solution
x∈/R
Alternative Form
No real solution
Show Solution

Solve the equation(The complex numbers system)
Solve using the quadratic formula in the complex numbers system
Solve by completing the square in the complex numbers system
Solve using the PQ formula in the complex numbers system
x1=161−16191i,x2=161+16191i
Alternative Form
x1≈0.0625−0.863767i,x2≈0.0625+0.863767i
Evaluate
−2(x−6)=−4x2×4
Multiply the terms
−2(x−6)=−16x2
Swap the sides
−16x2=−2(x−6)
Expand the expression
More Steps

Evaluate
−2(x−6)
Apply the distributive property
−2x−(−2×6)
Multiply the numbers
−2x−(−12)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−2x+12
−16x2=−2x+12
Move the expression to the left side
−16x2+2x−12=0
Multiply both sides
16x2−2x+12=0
Substitute a=16,b=−2 and c=12 into the quadratic formula x=2a−b±b2−4ac
x=2×162±(−2)2−4×16×12
Simplify the expression
x=322±(−2)2−4×16×12
Simplify the expression
More Steps

Evaluate
(−2)2−4×16×12
Multiply the terms
More Steps

Multiply the terms
4×16×12
Multiply the terms
64×12
Multiply the numbers
768
(−2)2−768
Rewrite the expression
22−768
Evaluate the power
4−768
Subtract the numbers
−764
x=322±−764
Simplify the radical expression
More Steps

Evaluate
−764
Evaluate the power
764×−1
Evaluate the power
764×i
Evaluate the power
More Steps

Evaluate
764
Write the expression as a product where the root of one of the factors can be evaluated
4×191
Write the number in exponential form with the base of 2
22×191
The root of a product is equal to the product of the roots of each factor
22×191
Reduce the index of the radical and exponent with 2
2191
2191×i
x=322±2191×i
Separate the equation into 2 possible cases
x=322+2191×ix=322−2191×i
Simplify the expression
More Steps

Evaluate
x=322+2191×i
Divide the terms
More Steps

Evaluate
322+2191×i
Rewrite the expression
322(1+191×i)
Cancel out the common factor 2
161+191×i
Simplify
161+16191i
x=161+16191i
x=161+16191ix=322−2191×i
Simplify the expression
More Steps

Evaluate
x=322−2191×i
Divide the terms
More Steps

Evaluate
322−2191×i
Rewrite the expression
322(1−191×i)
Cancel out the common factor 2
161−191×i
Simplify
161−16191i
x=161−16191i
x=161+16191ix=161−16191i
Solution
x1=161−16191i,x2=161+16191i
Alternative Form
x1≈0.0625−0.863767i,x2≈0.0625+0.863767i
Show Solution
