Question
Simplify the expression
−25x2+324
Evaluate
−25x2−(−36)×9
Remove the parentheses
−25x2−(−36×9)
Multiply the numbers
−25x2−(−324)
Solution
−25x2+324
Show Solution

Factor the expression
(18−5x)(18+5x)
Evaluate
−25x2−(−36)×9
Evaluate
More Steps

Evaluate
(−36)×9
Remove the parentheses
−36×9
Multiply the numbers
−324
−25x2+324
Rewrite the expression in exponential form
182−(5x)2
Solution
(18−5x)(18+5x)
Show Solution

Find the roots
x1=−518,x2=518
Alternative Form
x1=−3.6,x2=3.6
Evaluate
−25x2−(−36)×9
To find the roots of the expression,set the expression equal to 0
−25x2−(−36)×9=0
Remove the parentheses
−25x2−(−36×9)=0
Multiply the numbers
−25x2−(−324)=0
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−25x2+324=0
Move the constant to the right-hand side and change its sign
−25x2=0−324
Removing 0 doesn't change the value,so remove it from the expression
−25x2=−324
Change the signs on both sides of the equation
25x2=324
Divide both sides
2525x2=25324
Divide the numbers
x2=25324
Take the root of both sides of the equation and remember to use both positive and negative roots
x=±25324
Simplify the expression
More Steps

Evaluate
25324
To take a root of a fraction,take the root of the numerator and denominator separately
25324
Simplify the radical expression
More Steps

Evaluate
324
Write the number in exponential form with the base of 18
182
Reduce the index of the radical and exponent with 2
18
2518
Simplify the radical expression
More Steps

Evaluate
25
Write the number in exponential form with the base of 5
52
Reduce the index of the radical and exponent with 2
5
518
x=±518
Separate the equation into 2 possible cases
x=518x=−518
Solution
x1=−518,x2=518
Alternative Form
x1=−3.6,x2=3.6
Show Solution
