Question
Solve the equation
x=1136
Alternative Form
x=3.2˙7˙
Evaluate
−2x×1−3(x−4)=4(3−x)×4
Multiply the terms
−2x−3(x−4)=4(3−x)×4
Multiply the terms
−2x−3(x−4)=16(3−x)
Calculate
More Steps

Evaluate
−2x−3(x−4)
Expand the expression
More Steps

Calculate
−3(x−4)
Apply the distributive property
−3x−(−3×4)
Multiply the numbers
−3x−(−12)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−3x+12
−2x−3x+12
Subtract the terms
More Steps

Evaluate
−2x−3x
Collect like terms by calculating the sum or difference of their coefficients
(−2−3)x
Subtract the numbers
−5x
−5x+12
−5x+12=16(3−x)
Calculate
More Steps

Evaluate
16(3−x)
Apply the distributive property
16×3−16x
Multiply the numbers
48−16x
−5x+12=48−16x
Move the expression to the left side
−5x+12−(48−16x)=0
Calculate the sum or difference
More Steps

Add the terms
−5x+12−(48−16x)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−5x+12−48+16x
Add the terms
More Steps

Evaluate
−5x+16x
Collect like terms by calculating the sum or difference of their coefficients
(−5+16)x
Add the numbers
11x
11x+12−48
Subtract the numbers
11x−36
11x−36=0
Move the constant to the right-hand side and change its sign
11x=0+36
Removing 0 doesn't change the value,so remove it from the expression
11x=36
Divide both sides
1111x=1136
Solution
x=1136
Alternative Form
x=3.2˙7˙
Show Solution

Rewrite the equation
11x=36
Evaluate
−2x×1−3(x−4)=4(3−x)×4
Evaluate
More Steps

Evaluate
−2x×1−3(x−4)
Multiply the terms
−2x−3(x−4)
Expand the expression
More Steps

Calculate
−3(x−4)
Apply the distributive property
−3x−(−3×4)
Multiply the numbers
−3x−(−12)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−3x+12
−2x−3x+12
Subtract the terms
More Steps

Evaluate
−2x−3x
Collect like terms by calculating the sum or difference of their coefficients
(−2−3)x
Subtract the numbers
−5x
−5x+12
−5x+12=4(3−x)×4
Evaluate
−5x+12=16(3−x)
Multiply
More Steps

Evaluate
16(3−x)
Apply the distributive property
16×3−16x
Multiply the numbers
48−16x
−5x+12=48−16x
Move the variable to the left side
11x+12=48
Solution
11x=36
Show Solution
