Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
x1=618−318,x2=618+318
Alternative Form
x1≈0.027908,x2≈5.972092
Evaluate
−3=3(x−6)×6x
Multiply
More Steps

Evaluate
3(x−6)×6x
Multiply the terms
18(x−6)x
Multiply the terms
18x(x−6)
−3=18x(x−6)
Swap the sides
18x(x−6)=−3
Expand the expression
More Steps

Evaluate
18x(x−6)
Apply the distributive property
18x×x−18x×6
Multiply the terms
18x2−18x×6
Multiply the numbers
18x2−108x
18x2−108x=−3
Move the expression to the left side
18x2−108x+3=0
Substitute a=18,b=−108 and c=3 into the quadratic formula x=2a−b±b2−4ac
x=2×18108±(−108)2−4×18×3
Simplify the expression
x=36108±(−108)2−4×18×3
Simplify the expression
More Steps

Evaluate
(−108)2−4×18×3
Multiply the terms
More Steps

Multiply the terms
4×18×3
Multiply the terms
72×3
Multiply the numbers
216
(−108)2−216
Rewrite the expression
1082−216
Evaluate the power
11664−216
Subtract the numbers
11448
x=36108±11448
Simplify the radical expression
More Steps

Evaluate
11448
Write the expression as a product where the root of one of the factors can be evaluated
36×318
Write the number in exponential form with the base of 6
62×318
The root of a product is equal to the product of the roots of each factor
62×318
Reduce the index of the radical and exponent with 2
6318
x=36108±6318
Separate the equation into 2 possible cases
x=36108+6318x=36108−6318
Simplify the expression
More Steps

Evaluate
x=36108+6318
Divide the terms
More Steps

Evaluate
36108+6318
Rewrite the expression
366(18+318)
Cancel out the common factor 6
618+318
x=618+318
x=618+318x=36108−6318
Simplify the expression
More Steps

Evaluate
x=36108−6318
Divide the terms
More Steps

Evaluate
36108−6318
Rewrite the expression
366(18−318)
Cancel out the common factor 6
618−318
x=618−318
x=618+318x=618−318
Solution
x1=618−318,x2=618+318
Alternative Form
x1≈0.027908,x2≈5.972092
Show Solution
