Question
Solve the equation(The real numbers system)
x∈/R
Alternative Form
No real solution
Evaluate
−3(−3x2)−2x−1=−35
Multiply the numbers
More Steps

Evaluate
−3(−3)
Multiplying or dividing an even number of negative terms equals a positive
3×3
Multiply the numbers
9
9x2−2x−1=−35
Move the expression to the left side
9x2−2x+34=0
Substitute a=9,b=−2 and c=34 into the quadratic formula x=2a−b±b2−4ac
x=2×92±(−2)2−4×9×34
Simplify the expression
x=182±(−2)2−4×9×34
Simplify the expression
More Steps

Evaluate
(−2)2−4×9×34
Multiply the terms
More Steps

Multiply the terms
4×9×34
Multiply the terms
36×34
Multiply the numbers
1224
(−2)2−1224
Rewrite the expression
22−1224
Evaluate the power
4−1224
Subtract the numbers
−1220
x=182±−1220
Solution
x∈/R
Alternative Form
No real solution
Show Solution

Solve the equation(The complex numbers system)
Solve using the quadratic formula in the complex numbers system
Solve by completing the square in the complex numbers system
Solve using the PQ formula in the complex numbers system
x1=91−9305i,x2=91+9305i
Alternative Form
x1≈0.1˙−1.940472i,x2≈0.1˙+1.940472i
Evaluate
−3(−3x2)−2x−1=−35
Multiply the numbers
More Steps

Evaluate
−3(−3)
Multiplying or dividing an even number of negative terms equals a positive
3×3
Multiply the numbers
9
9x2−2x−1=−35
Move the expression to the left side
9x2−2x+34=0
Substitute a=9,b=−2 and c=34 into the quadratic formula x=2a−b±b2−4ac
x=2×92±(−2)2−4×9×34
Simplify the expression
x=182±(−2)2−4×9×34
Simplify the expression
More Steps

Evaluate
(−2)2−4×9×34
Multiply the terms
More Steps

Multiply the terms
4×9×34
Multiply the terms
36×34
Multiply the numbers
1224
(−2)2−1224
Rewrite the expression
22−1224
Evaluate the power
4−1224
Subtract the numbers
−1220
x=182±−1220
Simplify the radical expression
More Steps

Evaluate
−1220
Evaluate the power
1220×−1
Evaluate the power
1220×i
Evaluate the power
More Steps

Evaluate
1220
Write the expression as a product where the root of one of the factors can be evaluated
4×305
Write the number in exponential form with the base of 2
22×305
The root of a product is equal to the product of the roots of each factor
22×305
Reduce the index of the radical and exponent with 2
2305
2305×i
x=182±2305×i
Separate the equation into 2 possible cases
x=182+2305×ix=182−2305×i
Simplify the expression
More Steps

Evaluate
x=182+2305×i
Divide the terms
More Steps

Evaluate
182+2305×i
Rewrite the expression
182(1+305×i)
Cancel out the common factor 2
91+305×i
Simplify
91+9305i
x=91+9305i
x=91+9305ix=182−2305×i
Simplify the expression
More Steps

Evaluate
x=182−2305×i
Divide the terms
More Steps

Evaluate
182−2305×i
Rewrite the expression
182(1−305×i)
Cancel out the common factor 2
91−305×i
Simplify
91−9305i
x=91−9305i
x=91+9305ix=91−9305i
Solution
x1=91−9305i,x2=91+9305i
Alternative Form
x1≈0.1˙−1.940472i,x2≈0.1˙+1.940472i
Show Solution
