Question
Solve the inequality
n<−916
Alternative Form
n∈(−∞,−916)
Evaluate
−3−2(−10n−9)<2n−8−9
Subtract the numbers
−3−2(−10n−9)<2n−17
Move the expression to the left side
−3−2(−10n−9)−(2n−17)<0
Subtract the terms
More Steps

Evaluate
−3−2(−10n−9)−(2n−17)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−3−2(−10n−9)−2n+17
Add the numbers
14−2(−10n−9)−2n
14−2(−10n−9)−2n<0
Calculate
More Steps

Evaluate
14−2(−10n−9)−2n
Expand the expression
More Steps

Calculate
−2(−10n−9)
Apply the distributive property
−2(−10n)−(−2×9)
Multiply the numbers
20n−(−2×9)
Multiply the numbers
20n−(−18)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
20n+18
14+20n+18−2n
Add the numbers
32+20n−2n
Subtract the terms
More Steps

Evaluate
20n−2n
Collect like terms by calculating the sum or difference of their coefficients
(20−2)n
Subtract the numbers
18n
32+18n
32+18n<0
Move the constant to the right side
18n<0−32
Removing 0 doesn't change the value,so remove it from the expression
18n<−32
Divide both sides
1818n<18−32
Divide the numbers
n<18−32
Solution
More Steps

Evaluate
18−32
Cancel out the common factor 2
9−16
Use b−a=−ba=−ba to rewrite the fraction
−916
n<−916
Alternative Form
n∈(−∞,−916)
Show Solution
