Question
Solve the equation
Solve for x
Solve for y
x=0x=−521
Evaluate
−3x×7y=5x2y
Multiply the terms
−21xy=5x2y
Rewrite the expression
−21yx=5yx2
Add or subtract both sides
−21yx−5yx2=0
Factor the expression
More Steps

Evaluate
−21yx−5yx2
Rewrite the expression
−yx×21−yx×5x
Factor out −yx from the expression
−yx(21+5x)
−yx(21+5x)=0
When the product of factors equals 0,at least one factor is 0
−yx=021+5x=0
Solve the equation for x
x=021+5x=0
Solution
More Steps

Evaluate
21+5x=0
Move the constant to the right-hand side and change its sign
5x=0−21
Removing 0 doesn't change the value,so remove it from the expression
5x=−21
Divide both sides
55x=5−21
Divide the numbers
x=5−21
Use b−a=−ba=−ba to rewrite the fraction
x=−521
x=0x=−521
Show Solution

Testing for symmetry
Testing for symmetry about the origin
Testing for symmetry about the x-axis
Testing for symmetry about the y-axis
Not symmetry with respect to the origin
Evaluate
−3x×7y=5x2y
Multiply the terms
−21xy=5x2y
To test if the graph of −21xy=5x2y is symmetry with respect to the origin,substitute -x for x and -y for y
−21(−x)(−y)=5(−x)2(−y)
Evaluate
−21xy=5(−x)2(−y)
Evaluate
More Steps

Evaluate
5(−x)2(−y)
Any expression multiplied by 1 remains the same
−5(−x)2y
Multiply the terms
−5x2y
−21xy=−5x2y
Solution
Not symmetry with respect to the origin
Show Solution

Rewrite the equation
r=0r=−521sec(θ)
Evaluate
−3x×7y=5x2y
Evaluate
−21xy=5x2y
Move the expression to the left side
−21xy−5x2y=0
To convert the equation to polar coordinates,substitute x for rcos(θ) and y for rsin(θ)
−21cos(θ)×rsin(θ)×r−5(cos(θ)×r)2sin(θ)×r=0
Factor the expression
−5cos2(θ)sin(θ)×r3−21cos(θ)sin(θ)×r2=0
Simplify the expression
−5cos2(θ)sin(θ)×r3−221sin(2θ)×r2=0
Factor the expression
r2(−5cos2(θ)sin(θ)×r−221sin(2θ))=0
When the product of factors equals 0,at least one factor is 0
r2=0−5cos2(θ)sin(θ)×r−221sin(2θ)=0
Evaluate
r=0−5cos2(θ)sin(θ)×r−221sin(2θ)=0
Solution
More Steps

Factor the expression
−5cos2(θ)sin(θ)×r−221sin(2θ)=0
Subtract the terms
−5cos2(θ)sin(θ)×r−221sin(2θ)−(−221sin(2θ))=0−(−221sin(2θ))
Evaluate
−5cos2(θ)sin(θ)×r=221sin(2θ)
Divide the terms
r=−10cos2(θ)sin(θ)21sin(2θ)
Simplify the expression
r=−521sec(θ)
r=0r=−521sec(θ)
Show Solution

Find the first derivative
Find the derivative with respect to x
Find the derivative with respect to y
dxdy=−21x+5x210xy+21y
Calculate
−3x7y=5x2y
Simplify the expression
−21xy=5x2y
Take the derivative of both sides
dxd(−21xy)=dxd(5x2y)
Calculate the derivative
More Steps

Evaluate
dxd(−21xy)
Use differentiation rules
dxd(−21x)×y−21x×dxd(y)
Evaluate the derivative
More Steps

Evaluate
dxd(−21x)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
−21×dxd(x)
Use dxdxn=nxn−1 to find derivative
−21×1
Any expression multiplied by 1 remains the same
−21
−21y−21x×dxd(y)
Evaluate the derivative
More Steps

Evaluate
dxd(y)
Use differentiation rules
dyd(y)×dxdy
Use dxdxn=nxn−1 to find derivative
dxdy
−21y−21xdxdy
−21y−21xdxdy=dxd(5x2y)
Calculate the derivative
More Steps

Evaluate
dxd(5x2y)
Use differentiation rules
dxd(5x2)×y+5x2×dxd(y)
Evaluate the derivative
More Steps

Evaluate
dxd(5x2)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
5×dxd(x2)
Use dxdxn=nxn−1 to find derivative
5×2x
Multiply the terms
10x
10xy+5x2×dxd(y)
Evaluate the derivative
More Steps

Evaluate
dxd(y)
Use differentiation rules
dyd(y)×dxdy
Use dxdxn=nxn−1 to find derivative
dxdy
10xy+5x2dxdy
−21y−21xdxdy=10xy+5x2dxdy
Move the expression to the left side
−21y−21xdxdy−5x2dxdy=10xy
Move the expression to the right side
−21xdxdy−5x2dxdy=10xy+21y
Collect like terms by calculating the sum or difference of their coefficients
(−21x−5x2)dxdy=10xy+21y
Divide both sides
−21x−5x2(−21x−5x2)dxdy=−21x−5x210xy+21y
Divide the numbers
dxdy=−21x−5x210xy+21y
Solution
dxdy=−21x+5x210xy+21y
Show Solution

Find the second derivative
Find the second derivative with respect to x
Find the second derivative with respect to y
dx2d2y=441x2+210x3+25x4882y+630yx+150yx2
Calculate
−3x7y=5x2y
Simplify the expression
−21xy=5x2y
Take the derivative of both sides
dxd(−21xy)=dxd(5x2y)
Calculate the derivative
More Steps

Evaluate
dxd(−21xy)
Use differentiation rules
dxd(−21x)×y−21x×dxd(y)
Evaluate the derivative
More Steps

Evaluate
dxd(−21x)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
−21×dxd(x)
Use dxdxn=nxn−1 to find derivative
−21×1
Any expression multiplied by 1 remains the same
−21
−21y−21x×dxd(y)
Evaluate the derivative
More Steps

Evaluate
dxd(y)
Use differentiation rules
dyd(y)×dxdy
Use dxdxn=nxn−1 to find derivative
dxdy
−21y−21xdxdy
−21y−21xdxdy=dxd(5x2y)
Calculate the derivative
More Steps

Evaluate
dxd(5x2y)
Use differentiation rules
dxd(5x2)×y+5x2×dxd(y)
Evaluate the derivative
More Steps

Evaluate
dxd(5x2)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
5×dxd(x2)
Use dxdxn=nxn−1 to find derivative
5×2x
Multiply the terms
10x
10xy+5x2×dxd(y)
Evaluate the derivative
More Steps

Evaluate
dxd(y)
Use differentiation rules
dyd(y)×dxdy
Use dxdxn=nxn−1 to find derivative
dxdy
10xy+5x2dxdy
−21y−21xdxdy=10xy+5x2dxdy
Move the expression to the left side
−21y−21xdxdy−5x2dxdy=10xy
Move the expression to the right side
−21xdxdy−5x2dxdy=10xy+21y
Collect like terms by calculating the sum or difference of their coefficients
(−21x−5x2)dxdy=10xy+21y
Divide both sides
−21x−5x2(−21x−5x2)dxdy=−21x−5x210xy+21y
Divide the numbers
dxdy=−21x−5x210xy+21y
Use b−a=−ba=−ba to rewrite the fraction
dxdy=−21x+5x210xy+21y
Take the derivative of both sides
dxd(dxdy)=dxd(−21x+5x210xy+21y)
Calculate the derivative
dx2d2y=dxd(−21x+5x210xy+21y)
Use differentiation rules
dx2d2y=−(21x+5x2)2dxd(10xy+21y)×(21x+5x2)−(10xy+21y)×dxd(21x+5x2)
Calculate the derivative
More Steps

Evaluate
dxd(10xy+21y)
Use differentiation rules
dxd(10xy)+dxd(21y)
Evaluate the derivative
10y+10xdxdy+dxd(21y)
Evaluate the derivative
10y+10xdxdy+21dxdy
dx2d2y=−(21x+5x2)2(10y+10xdxdy+21dxdy)(21x+5x2)−(10xy+21y)×dxd(21x+5x2)
Calculate the derivative
More Steps

Evaluate
dxd(21x+5x2)
Use differentiation rules
dxd(21x)+dxd(5x2)
Evaluate the derivative
21+dxd(5x2)
Evaluate the derivative
21+10x
dx2d2y=−(21x+5x2)2(10y+10xdxdy+21dxdy)(21x+5x2)−(10xy+21y)(21+10x)
Calculate
More Steps

Evaluate
(10y+10xdxdy+21dxdy)(21x+5x2)
Use the the distributive property to expand the expression
(10y+10xdxdy)(21x+5x2)+21dxdy×(21x+5x2)
Multiply the terms
210yx+50yx2+210x2dxdy+50x3dxdy+21dxdy×(21x+5x2)
Multiply the terms
210yx+50yx2+210x2dxdy+50x3dxdy+441xdxdy+105x2dxdy
Calculate
210yx+50yx2+315x2dxdy+50x3dxdy+441xdxdy
dx2d2y=−(21x+5x2)2210yx+50yx2+315x2dxdy+50x3dxdy+441xdxdy−(10xy+21y)(21+10x)
Calculate
More Steps

Evaluate
(10xy+21y)(21+10x)
Use the the distributive property to expand the expression
(10xy+21y)×21+(10xy+21y)×10x
Multiply the terms
210xy+441y+(10xy+21y)×10x
Multiply the terms
210xy+441y+100x2y+210yx
Calculate
420xy+441y+100x2y
dx2d2y=−(21x+5x2)2210yx+50yx2+315x2dxdy+50x3dxdy+441xdxdy−(420xy+441y+100x2y)
Calculate
More Steps

Calculate
210yx+50yx2+315x2dxdy+50x3dxdy+441xdxdy−(420xy+441y+100x2y)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
210yx+50yx2+315x2dxdy+50x3dxdy+441xdxdy−420xy−441y−100x2y
Subtract the terms
−210yx+50yx2+315x2dxdy+50x3dxdy+441xdxdy−441y−100x2y
Subtract the terms
−210yx−50yx2+315x2dxdy+50x3dxdy+441xdxdy−441y
dx2d2y=−(21x+5x2)2−210yx−50yx2+315x2dxdy+50x3dxdy+441xdxdy−441y
Use equation dxdy=−21x+5x210xy+21y to substitute
dx2d2y=−(21x+5x2)2−210yx−50yx2+315x2(−21x+5x210xy+21y)+50x3(−21x+5x210xy+21y)+441x(−21x+5x210xy+21y)−441y
Solution
More Steps

Calculate
−(21x+5x2)2−210yx−50yx2+315x2(−21x+5x210xy+21y)+50x3(−21x+5x210xy+21y)+441x(−21x+5x210xy+21y)−441y
Multiply
More Steps

Multiply the terms
315x2(−21x+5x210xy+21y)
Any expression multiplied by 1 remains the same
−315x2×21x+5x210xy+21y
Multiply the terms
−21+5x315x(10xy+21y)
−(21x+5x2)2−210yx−50yx2−21+5x315x(10xy+21y)+50x3(−21x+5x210xy+21y)+441x(−21x+5x210xy+21y)−441y
Multiply
More Steps

Multiply the terms
50x3(−21x+5x210xy+21y)
Any expression multiplied by 1 remains the same
−50x3×21x+5x210xy+21y
Multiply the terms
−21+5x50x2(10xy+21y)
−(21x+5x2)2−210yx−50yx2−21+5x315x(10xy+21y)−21+5x50x2(10xy+21y)+441x(−21x+5x210xy+21y)−441y
Multiply
More Steps

Multiply the terms
441x(−21x+5x210xy+21y)
Any expression multiplied by 1 remains the same
−441x×21x+5x210xy+21y
Multiply the terms
−21+5x441(10xy+21y)
−(21x+5x2)2−210yx−50yx2−21+5x315x(10xy+21y)−21+5x50x2(10xy+21y)−21+5x441(10xy+21y)−441y
Subtract the terms
More Steps

Evaluate
−210yx−50yx2−21+5x315x(10xy+21y)−21+5x50x2(10xy+21y)−21+5x441(10xy+21y)−441y
Reduce fractions to a common denominator
−21+5x210yx(21+5x)−21+5x50yx2(21+5x)−21+5x315x(10xy+21y)−21+5x50x2(10xy+21y)−21+5x441(10xy+21y)−21+5x441y(21+5x)
Write all numerators above the common denominator
21+5x−210yx(21+5x)−50yx2(21+5x)−315x(10xy+21y)−50x2(10xy+21y)−441(10xy+21y)−441y(21+5x)
Multiply the terms
21+5x−(4410yx+1050x2y)−50yx2(21+5x)−315x(10xy+21y)−50x2(10xy+21y)−441(10xy+21y)−441y(21+5x)
Multiply the terms
21+5x−(4410yx+1050x2y)−(1050yx2+250x3y)−315x(10xy+21y)−50x2(10xy+21y)−441(10xy+21y)−441y(21+5x)
Multiply the terms
21+5x−(4410yx+1050x2y)−(1050yx2+250x3y)−(3150x2y+6615yx)−50x2(10xy+21y)−441(10xy+21y)−441y(21+5x)
Multiply the terms
21+5x−(4410yx+1050x2y)−(1050yx2+250x3y)−(3150x2y+6615yx)−(500x3y+1050yx2)−441(10xy+21y)−441y(21+5x)
Multiply the terms
21+5x−(4410yx+1050x2y)−(1050yx2+250x3y)−(3150x2y+6615yx)−(500x3y+1050yx2)−(4410xy+9261y)−441y(21+5x)
Multiply the terms
21+5x−(4410yx+1050x2y)−(1050yx2+250x3y)−(3150x2y+6615yx)−(500x3y+1050yx2)−(4410xy+9261y)−(9261y+2205xy)
Subtract the terms
21+5x−17640yx−6300x2y−750x3y−18522y
Use b−a=−ba=−ba to rewrite the fraction
−21+5x17640yx+6300x2y+750x3y+18522y
Factor the expression
−21+5x(5x+21)(882y+630yx+150yx2)
Rewrite the expression
−5x+21(5x+21)(882y+630yx+150yx2)
Reduce the fraction
−(882y+630yx+150yx2)
Calculate
−882y−630yx−150yx2
−(21x+5x2)2−882y−630yx−150yx2
Use b−a=−ba=−ba to rewrite the fraction
−(−(21x+5x2)2882y+630yx+150yx2)
Calculate
(21x+5x2)2882y+630yx+150yx2
Expand the expression
More Steps

Evaluate
(21x+5x2)2
Use (a+b)2=a2+2ab+b2 to expand the expression
(21x)2+2×21x×5x2+(5x2)2
Calculate
441x2+210x3+25x4
441x2+210x3+25x4882y+630yx+150yx2
dx2d2y=441x2+210x3+25x4882y+630yx+150yx2
Show Solution
