Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
x1=−3204+210434,x2=3−204+210434
Alternative Form
x1≈−136.097969,x2≈0.097969
Evaluate
−3x2−24x×17=−40
Multiply the terms
−3x2−408x=−40
Move the expression to the left side
−3x2−408x+40=0
Multiply both sides
3x2+408x−40=0
Substitute a=3,b=408 and c=−40 into the quadratic formula x=2a−b±b2−4ac
x=2×3−408±4082−4×3(−40)
Simplify the expression
x=6−408±4082−4×3(−40)
Simplify the expression
More Steps

Evaluate
4082−4×3(−40)
Multiply
More Steps

Multiply the terms
4×3(−40)
Rewrite the expression
−4×3×40
Multiply the terms
−480
4082−(−480)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
4082+480
x=6−408±4082+480
Simplify the radical expression
More Steps

Evaluate
4082+480
Add the numbers
166944
Write the expression as a product where the root of one of the factors can be evaluated
16×10434
Write the number in exponential form with the base of 4
42×10434
The root of a product is equal to the product of the roots of each factor
42×10434
Reduce the index of the radical and exponent with 2
410434
x=6−408±410434
Separate the equation into 2 possible cases
x=6−408+410434x=6−408−410434
Simplify the expression
More Steps

Evaluate
x=6−408+410434
Divide the terms
More Steps

Evaluate
6−408+410434
Rewrite the expression
62(−204+210434)
Cancel out the common factor 2
3−204+210434
x=3−204+210434
x=3−204+210434x=6−408−410434
Simplify the expression
More Steps

Evaluate
x=6−408−410434
Divide the terms
More Steps

Evaluate
6−408−410434
Rewrite the expression
62(−204−210434)
Cancel out the common factor 2
3−204−210434
Use b−a=−ba=−ba to rewrite the fraction
−3204+210434
x=−3204+210434
x=3−204+210434x=−3204+210434
Solution
x1=−3204+210434,x2=3−204+210434
Alternative Form
x1≈−136.097969,x2≈0.097969
Show Solution
