Question
Solve the equation
Solve for x
Solve for y
x=−3y−15yx=3y−15y
Evaluate
−3x2y−5=0
Rewrite the expression
−3yx2−5=0
Move the constant to the right-hand side and change its sign
−3yx2=0+5
Removing 0 doesn't change the value,so remove it from the expression
−3yx2=5
Divide both sides
−3y−3yx2=−3y5
Divide the numbers
x2=−3y5
Use b−a=−ba=−ba to rewrite the fraction
x2=−3y5
Take the root of both sides of the equation and remember to use both positive and negative roots
x=±−3y5
Separate the equation into 2 possible cases
x=−3y5x=−−3y5
Simplify
x=−3y−15yx=−−3y5
Solution
x=−3y−15yx=3y−15y
Show Solution

Testing for symmetry
Testing for symmetry about the origin
Testing for symmetry about the x-axis
Testing for symmetry about the y-axis
Not symmetry with respect to the origin
Evaluate
−3x2y−5=0
To test if the graph of −3x2y−5=0 is symmetry with respect to the origin,substitute -x for x and -y for y
−3(−x)2(−y)−5=0
Evaluate
More Steps

Evaluate
−3(−x)2(−y)−5
Multiply
More Steps

Evaluate
−3(−x)2(−y)
Any expression multiplied by 1 remains the same
3(−x)2y
Multiply the terms
3x2y
3x2y−5
3x2y−5=0
Solution
Not symmetry with respect to the origin
Show Solution

Rewrite the equation
r=−33cos2(θ)sin(θ)35
Evaluate
−3x2y−5=0
To convert the equation to polar coordinates,substitute x for rcos(θ) and y for rsin(θ)
−3(cos(θ)×r)2sin(θ)×r−5=0
Factor the expression
−3cos2(θ)sin(θ)×r3−5=0
Subtract the terms
−3cos2(θ)sin(θ)×r3−5−(−5)=0−(−5)
Evaluate
−3cos2(θ)sin(θ)×r3=5
Divide the terms
r3=−3cos2(θ)sin(θ)5
Solution
More Steps

Evaluate
3−3cos2(θ)sin(θ)5
An odd root of a negative radicand is always a negative
−33cos2(θ)sin(θ)5
Simplify the radical expression
−33cos2(θ)sin(θ)35
r=−33cos2(θ)sin(θ)35
Show Solution

Find the first derivative
Find the derivative with respect to x
Find the derivative with respect to y
dxdy=−x2y
Calculate
−3x2y−5=0
Take the derivative of both sides
dxd(−3x2y−5)=dxd(0)
Calculate the derivative
More Steps

Evaluate
dxd(−3x2y−5)
Use differentiation rules
dxd(−3x2y)+dxd(−5)
Evaluate the derivative
More Steps

Evaluate
dxd(−3x2y)
Use differentiation rules
dxd(−3x2)×y−3x2×dxd(y)
Evaluate the derivative
−6xy−3x2×dxd(y)
Evaluate the derivative
−6xy−3x2dxdy
−6xy−3x2dxdy+dxd(−5)
Use dxd(c)=0 to find derivative
−6xy−3x2dxdy+0
Evaluate
−6xy−3x2dxdy
−6xy−3x2dxdy=dxd(0)
Calculate the derivative
−6xy−3x2dxdy=0
Move the expression to the right-hand side and change its sign
−3x2dxdy=0+6xy
Add the terms
−3x2dxdy=6xy
Divide both sides
−3x2−3x2dxdy=−3x26xy
Divide the numbers
dxdy=−3x26xy
Solution
More Steps

Evaluate
−3x26xy
Cancel out the common factor 3
−x22xy
Reduce the fraction
More Steps

Evaluate
x2x
Use the product rule aman=an−m to simplify the expression
x2−11
Subtract the terms
x11
Simplify
x1
−x2y
Use b−a=−ba=−ba to rewrite the fraction
−x2y
dxdy=−x2y
Show Solution

Find the second derivative
Find the second derivative with respect to x
Find the second derivative with respect to y
dx2d2y=x26y
Calculate
−3x2y−5=0
Take the derivative of both sides
dxd(−3x2y−5)=dxd(0)
Calculate the derivative
More Steps

Evaluate
dxd(−3x2y−5)
Use differentiation rules
dxd(−3x2y)+dxd(−5)
Evaluate the derivative
More Steps

Evaluate
dxd(−3x2y)
Use differentiation rules
dxd(−3x2)×y−3x2×dxd(y)
Evaluate the derivative
−6xy−3x2×dxd(y)
Evaluate the derivative
−6xy−3x2dxdy
−6xy−3x2dxdy+dxd(−5)
Use dxd(c)=0 to find derivative
−6xy−3x2dxdy+0
Evaluate
−6xy−3x2dxdy
−6xy−3x2dxdy=dxd(0)
Calculate the derivative
−6xy−3x2dxdy=0
Move the expression to the right-hand side and change its sign
−3x2dxdy=0+6xy
Add the terms
−3x2dxdy=6xy
Divide both sides
−3x2−3x2dxdy=−3x26xy
Divide the numbers
dxdy=−3x26xy
Divide the numbers
More Steps

Evaluate
−3x26xy
Cancel out the common factor 3
−x22xy
Reduce the fraction
More Steps

Evaluate
x2x
Use the product rule aman=an−m to simplify the expression
x2−11
Subtract the terms
x11
Simplify
x1
−x2y
Use b−a=−ba=−ba to rewrite the fraction
−x2y
dxdy=−x2y
Take the derivative of both sides
dxd(dxdy)=dxd(−x2y)
Calculate the derivative
dx2d2y=dxd(−x2y)
Use differentiation rules
dx2d2y=−x2dxd(2y)×x−2y×dxd(x)
Calculate the derivative
More Steps

Evaluate
dxd(2y)
Simplify
2×dxd(y)
Calculate
2dxdy
dx2d2y=−x22dxdy×x−2y×dxd(x)
Use dxdxn=nxn−1 to find derivative
dx2d2y=−x22dxdy×x−2y×1
Use the commutative property to reorder the terms
dx2d2y=−x22xdxdy−2y×1
Any expression multiplied by 1 remains the same
dx2d2y=−x22xdxdy−2y
Use equation dxdy=−x2y to substitute
dx2d2y=−x22x(−x2y)−2y
Solution
More Steps

Calculate
−x22x(−x2y)−2y
Multiply
More Steps

Multiply the terms
2x(−x2y)
Any expression multiplied by 1 remains the same
−2x×x2y
Multiply the terms
−4y
−x2−4y−2y
Subtract the terms
More Steps

Simplify
−4y−2y
Collect like terms by calculating the sum or difference of their coefficients
(−4−2)y
Subtract the numbers
−6y
−x2−6y
Divide the terms
−(−x26y)
Calculate
x26y
dx2d2y=x26y
Show Solution
