Question
Factor the expression
−(3y2+4y+4)
Evaluate
−3y2−4y−4
Solution
−(3y2+4y+4)
Show Solution

Find the roots
y1=−32−322i,y2=−32+322i
Alternative Form
y1≈−0.6˙−0.942809i,y2≈−0.6˙+0.942809i
Evaluate
−3y2−4y−4
To find the roots of the expression,set the expression equal to 0
−3y2−4y−4=0
Multiply both sides
3y2+4y+4=0
Substitute a=3,b=4 and c=4 into the quadratic formula y=2a−b±b2−4ac
y=2×3−4±42−4×3×4
Simplify the expression
y=6−4±42−4×3×4
Simplify the expression
More Steps

Evaluate
42−4×3×4
Multiply the terms
More Steps

Multiply the terms
4×3×4
Multiply the terms
12×4
Multiply the numbers
48
42−48
Evaluate the power
16−48
Subtract the numbers
−32
y=6−4±−32
Simplify the radical expression
More Steps

Evaluate
−32
Evaluate the power
32×−1
Evaluate the power
32×i
Evaluate the power
More Steps

Evaluate
32
Write the expression as a product where the root of one of the factors can be evaluated
16×2
Write the number in exponential form with the base of 4
42×2
The root of a product is equal to the product of the roots of each factor
42×2
Reduce the index of the radical and exponent with 2
42
42×i
y=6−4±42×i
Separate the equation into 2 possible cases
y=6−4+42×iy=6−4−42×i
Simplify the expression
More Steps

Evaluate
y=6−4+42×i
Divide the terms
More Steps

Evaluate
6−4+42×i
Rewrite the expression
62(−2+22×i)
Cancel out the common factor 2
3−2+22×i
Use b−a=−ba=−ba to rewrite the fraction
−32−22×i
Simplify
−32+322i
y=−32+322i
y=−32+322iy=6−4−42×i
Simplify the expression
More Steps

Evaluate
y=6−4−42×i
Divide the terms
More Steps

Evaluate
6−4−42×i
Rewrite the expression
62(−2−22×i)
Cancel out the common factor 2
3−2−22×i
Use b−a=−ba=−ba to rewrite the fraction
−32+22×i
Simplify
−32−322i
y=−32−322i
y=−32+322iy=−32−322i
Solution
y1=−32−322i,y2=−32+322i
Alternative Form
y1≈−0.6˙−0.942809i,y2≈−0.6˙+0.942809i
Show Solution
