Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
w1=220−406,w2=220+406
Alternative Form
w1≈−0.074721,w2≈20.074721
Evaluate
−4(3w×10)=9−6w×w
Remove the parentheses
−4×3w×10=9−6w×w
Multiply the terms
More Steps

Evaluate
4×3×10
Multiply the terms
12×10
Multiply the numbers
120
−120w=9−6w×w
Multiply the terms
−120w=9−6w2
Swap the sides
9−6w2=−120w
Move the expression to the left side
9−6w2+120w=0
Rewrite in standard form
−6w2+120w+9=0
Multiply both sides
6w2−120w−9=0
Substitute a=6,b=−120 and c=−9 into the quadratic formula w=2a−b±b2−4ac
w=2×6120±(−120)2−4×6(−9)
Simplify the expression
w=12120±(−120)2−4×6(−9)
Simplify the expression
More Steps

Evaluate
(−120)2−4×6(−9)
Multiply
More Steps

Multiply the terms
4×6(−9)
Rewrite the expression
−4×6×9
Multiply the terms
−216
(−120)2−(−216)
Rewrite the expression
1202−(−216)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
1202+216
Evaluate the power
14400+216
Add the numbers
14616
w=12120±14616
Simplify the radical expression
More Steps

Evaluate
14616
Write the expression as a product where the root of one of the factors can be evaluated
36×406
Write the number in exponential form with the base of 6
62×406
The root of a product is equal to the product of the roots of each factor
62×406
Reduce the index of the radical and exponent with 2
6406
w=12120±6406
Separate the equation into 2 possible cases
w=12120+6406w=12120−6406
Simplify the expression
More Steps

Evaluate
w=12120+6406
Divide the terms
More Steps

Evaluate
12120+6406
Rewrite the expression
126(20+406)
Cancel out the common factor 6
220+406
w=220+406
w=220+406w=12120−6406
Simplify the expression
More Steps

Evaluate
w=12120−6406
Divide the terms
More Steps

Evaluate
12120−6406
Rewrite the expression
126(20−406)
Cancel out the common factor 6
220−406
w=220−406
w=220+406w=220−406
Solution
w1=220−406,w2=220+406
Alternative Form
w1≈−0.074721,w2≈20.074721
Show Solution
