Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
x1=105−53,x2=105+53
Alternative Form
x1≈−0.228011,x2≈1.228011
Evaluate
−5(2x−2)×5x×1=−14
Multiply the terms
More Steps

Evaluate
−5(2x−2)×5x×1
Rewrite the expression
−5(2x−2)×5x
Multiply the terms
−25(2x−2)x
Multiply the terms
−25x(2x−2)
−25x(2x−2)=−14
Expand the expression
More Steps

Evaluate
−25x(2x−2)
Apply the distributive property
−25x×2x−(−25x×2)
Multiply the terms
More Steps

Evaluate
−25x×2x
Multiply the numbers
−50x×x
Multiply the terms
−50x2
−50x2−(−25x×2)
Multiply the numbers
−50x2−(−50x)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−50x2+50x
−50x2+50x=−14
Move the expression to the left side
−50x2+50x+14=0
Multiply both sides
50x2−50x−14=0
Substitute a=50,b=−50 and c=−14 into the quadratic formula x=2a−b±b2−4ac
x=2×5050±(−50)2−4×50(−14)
Simplify the expression
x=10050±(−50)2−4×50(−14)
Simplify the expression
More Steps

Evaluate
(−50)2−4×50(−14)
Multiply
More Steps

Multiply the terms
4×50(−14)
Rewrite the expression
−4×50×14
Multiply the terms
−2800
(−50)2−(−2800)
Rewrite the expression
502−(−2800)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
502+2800
Evaluate the power
2500+2800
Add the numbers
5300
x=10050±5300
Simplify the radical expression
More Steps

Evaluate
5300
Write the expression as a product where the root of one of the factors can be evaluated
100×53
Write the number in exponential form with the base of 10
102×53
The root of a product is equal to the product of the roots of each factor
102×53
Reduce the index of the radical and exponent with 2
1053
x=10050±1053
Separate the equation into 2 possible cases
x=10050+1053x=10050−1053
Simplify the expression
More Steps

Evaluate
x=10050+1053
Divide the terms
More Steps

Evaluate
10050+1053
Rewrite the expression
10010(5+53)
Cancel out the common factor 10
105+53
x=105+53
x=105+53x=10050−1053
Simplify the expression
More Steps

Evaluate
x=10050−1053
Divide the terms
More Steps

Evaluate
10050−1053
Rewrite the expression
10010(5−53)
Cancel out the common factor 10
105−53
x=105−53
x=105+53x=105−53
Solution
x1=105−53,x2=105+53
Alternative Form
x1≈−0.228011,x2≈1.228011
Show Solution
