Question
−5(a−2b3c−4d)−(−3)(4a−3b2cd)
Simplify the expression
7a+10b3c+20d−9b2cd
Evaluate
−5(a−2b3c−4d)−(−3)(4a−3b2cd)
Remove the parentheses
−5(a−2b3c−4d)−(−3(4a−3b2cd))
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−5(a−2b3c−4d)+3(4a−3b2cd)
Expand the expression
More Steps

Calculate
−5(a−2b3c−4d)
Apply the distributive property
−5a−(−5×2b3c)−(−5×4d)
Multiply the numbers
−5a−(−10b3c)−(−5×4d)
Multiply the numbers
−5a−(−10b3c)−(−20d)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−5a+10b3c+20d
−5a+10b3c+20d+3(4a−3b2cd)
Expand the expression
More Steps

Calculate
3(4a−3b2cd)
Apply the distributive property
3×4a−3×3b2cd
Multiply the numbers
12a−3×3b2cd
Multiply the numbers
12a−9b2cd
−5a+10b3c+20d+12a−9b2cd
Solution
More Steps

Evaluate
−5a+12a
Collect like terms by calculating the sum or difference of their coefficients
(−5+12)a
Add the numbers
7a
7a+10b3c+20d−9b2cd
Show Solution
