Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
x1=−185+205,x2=18−5+205
Alternative Form
x1≈−1.073212,x2≈0.517657
Evaluate
−5(x−1)=x2×9
Use the commutative property to reorder the terms
−5(x−1)=9x2
Swap the sides
9x2=−5(x−1)
Expand the expression
More Steps

Evaluate
−5(x−1)
Apply the distributive property
−5x−(−5×1)
Any expression multiplied by 1 remains the same
−5x−(−5)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−5x+5
9x2=−5x+5
Move the expression to the left side
9x2+5x−5=0
Substitute a=9,b=5 and c=−5 into the quadratic formula x=2a−b±b2−4ac
x=2×9−5±52−4×9(−5)
Simplify the expression
x=18−5±52−4×9(−5)
Simplify the expression
More Steps

Evaluate
52−4×9(−5)
Multiply
More Steps

Multiply the terms
4×9(−5)
Rewrite the expression
−4×9×5
Multiply the terms
−180
52−(−180)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
52+180
Evaluate the power
25+180
Add the numbers
205
x=18−5±205
Separate the equation into 2 possible cases
x=18−5+205x=18−5−205
Use b−a=−ba=−ba to rewrite the fraction
x=18−5+205x=−185+205
Solution
x1=−185+205,x2=18−5+205
Alternative Form
x1≈−1.073212,x2≈0.517657
Show Solution
