Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
n1=−41+4137,n2=4−1+4137
Alternative Form
n1≈−16.329879,n2≈15.829879
Evaluate
−507=(n−2)×2−4n−10
Divide the terms
More Steps

Evaluate
2−4n−10
Use b−a=−ba=−ba to rewrite the fraction
−24n+10
Factor
−22(2n+5)
Reduce the fraction
−(2n+5)
Calculate
−2n−5
−507=(n−2)(−2n−5)
Swap the sides
(n−2)(−2n−5)=−507
Expand the expression
More Steps

Evaluate
(n−2)(−2n−5)
Apply the distributive property
n(−2n)−n×5−2(−2n)−(−2×5)
Multiply the terms
More Steps

Evaluate
n(−2n)
Use the commutative property to reorder the terms
−2n×n
Multiply the terms
−2n2
−2n2−n×5−2(−2n)−(−2×5)
Use the commutative property to reorder the terms
−2n2−5n−2(−2n)−(−2×5)
Multiply the numbers
More Steps

Evaluate
−2(−2)
Multiplying or dividing an even number of negative terms equals a positive
2×2
Multiply the numbers
4
−2n2−5n+4n−(−2×5)
Multiply the numbers
−2n2−5n+4n−(−10)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−2n2−5n+4n+10
Add the terms
More Steps

Evaluate
−5n+4n
Collect like terms by calculating the sum or difference of their coefficients
(−5+4)n
Add the numbers
−n
−2n2−n+10
−2n2−n+10=−507
Move the expression to the left side
−2n2−n+517=0
Multiply both sides
2n2+n−517=0
Substitute a=2,b=1 and c=−517 into the quadratic formula n=2a−b±b2−4ac
n=2×2−1±12−4×2(−517)
Simplify the expression
n=4−1±12−4×2(−517)
Simplify the expression
More Steps

Evaluate
12−4×2(−517)
1 raised to any power equals to 1
1−4×2(−517)
Multiply
More Steps

Multiply the terms
4×2(−517)
Rewrite the expression
−4×2×517
Multiply the terms
−4136
1−(−4136)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
1+4136
Add the numbers
4137
n=4−1±4137
Separate the equation into 2 possible cases
n=4−1+4137n=4−1−4137
Use b−a=−ba=−ba to rewrite the fraction
n=4−1+4137n=−41+4137
Solution
n1=−41+4137,n2=4−1+4137
Alternative Form
n1≈−16.329879,n2≈15.829879
Show Solution
