Question
Factor the expression
−(5j+8j2+1)
Evaluate
−5j−8j2−1
Solution
−(5j+8j2+1)
Show Solution

Find the roots
j1=−165−167i,j2=−165+167i
Alternative Form
j1≈−0.3125−0.165359i,j2≈−0.3125+0.165359i
Evaluate
−5j−8j2−1
To find the roots of the expression,set the expression equal to 0
−5j−8j2−1=0
Rewrite in standard form
−8j2−5j−1=0
Multiply both sides
8j2+5j+1=0
Substitute a=8,b=5 and c=1 into the quadratic formula j=2a−b±b2−4ac
j=2×8−5±52−4×8
Simplify the expression
j=16−5±52−4×8
Simplify the expression
More Steps

Evaluate
52−4×8
Multiply the numbers
52−32
Evaluate the power
25−32
Subtract the numbers
−7
j=16−5±−7
Simplify the radical expression
More Steps

Evaluate
−7
Evaluate the power
7×−1
Evaluate the power
7×i
j=16−5±7×i
Separate the equation into 2 possible cases
j=16−5+7×ij=16−5−7×i
Simplify the expression
More Steps

Evaluate
j=16−5+7×i
Divide the terms
More Steps

Evaluate
16−5+7×i
Use b−a=−ba=−ba to rewrite the fraction
−165−7×i
Simplify
−165+167i
j=−165+167i
j=−165+167ij=16−5−7×i
Simplify the expression
More Steps

Evaluate
j=16−5−7×i
Divide the terms
More Steps

Evaluate
16−5−7×i
Use b−a=−ba=−ba to rewrite the fraction
−165+7×i
Simplify
−165−167i
j=−165−167i
j=−165+167ij=−165−167i
Solution
j1=−165−167i,j2=−165+167i
Alternative Form
j1≈−0.3125−0.165359i,j2≈−0.3125+0.165359i
Show Solution
