Question
Solve the equation
x=1515−415
Alternative Form
x≈−0.032796
Evaluate
−5x∣3x−6∣=1
Change the sign
5x∣3x−6∣=−1
Separate the equation into 2 possible cases
5x(3x−6)=−1,3x−6≥05x(−(3x−6))=−1,3x−6<0
Evaluate
More Steps

Evaluate
5x(3x−6)=−1
Expand the expression
More Steps

Evaluate
5x(3x−6)
Apply the distributive property
5x×3x−5x×6
Multiply the terms
15x2−5x×6
Multiply the numbers
15x2−30x
15x2−30x=−1
Move the expression to the left side
15x2−30x−(−1)=0
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
15x2−30x+1=0
Substitute a=15,b=−30 and c=1 into the quadratic formula x=2a−b±b2−4ac
x=2×1530±(−30)2−4×15
Simplify the expression
x=3030±(−30)2−4×15
Simplify the expression
More Steps

Evaluate
(−30)2−4×15
Multiply the numbers
(−30)2−60
Rewrite the expression
302−60
Evaluate the power
900−60
Subtract the numbers
840
x=3030±840
Simplify the radical expression
More Steps

Evaluate
840
Write the expression as a product where the root of one of the factors can be evaluated
4×210
Write the number in exponential form with the base of 2
22×210
The root of a product is equal to the product of the roots of each factor
22×210
Reduce the index of the radical and exponent with 2
2210
x=3030±2210
Separate the equation into 2 possible cases
x=3030+2210x=3030−2210
Simplify the expression
x=1515+210x=3030−2210
Simplify the expression
x=1515+210x=1515−210
x=1515+210x=1515−210,3x−6≥05x(−(3x−6))=−1,3x−6<0
Evaluate
More Steps

Evaluate
3x−6≥0
Move the constant to the right side
3x≥0+6
Removing 0 doesn't change the value,so remove it from the expression
3x≥6
Divide both sides
33x≥36
Divide the numbers
x≥36
Divide the numbers
More Steps

Evaluate
36
Reduce the numbers
12
Calculate
2
x≥2
x=1515+210x=1515−210,x≥25x(−(3x−6))=−1,3x−6<0
Evaluate
More Steps

Evaluate
5x(−(3x−6))=−1
Remove the parentheses
5x(−3x+6)=−1
Expand the expression
More Steps

Evaluate
5x(−3x+6)
Apply the distributive property
5x(−3x)+5x×6
Multiply the terms
−15x2+5x×6
Multiply the numbers
−15x2+30x
−15x2+30x=−1
Move the expression to the left side
−15x2+30x−(−1)=0
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−15x2+30x+1=0
Multiply both sides
15x2−30x−1=0
Substitute a=15,b=−30 and c=−1 into the quadratic formula x=2a−b±b2−4ac
x=2×1530±(−30)2−4×15(−1)
Simplify the expression
x=3030±(−30)2−4×15(−1)
Simplify the expression
More Steps

Evaluate
(−30)2−4×15(−1)
Multiply
(−30)2−(−60)
Rewrite the expression
302−(−60)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
302+60
Evaluate the power
900+60
Add the numbers
960
x=3030±960
Simplify the radical expression
More Steps

Evaluate
960
Write the expression as a product where the root of one of the factors can be evaluated
64×15
Write the number in exponential form with the base of 8
82×15
The root of a product is equal to the product of the roots of each factor
82×15
Reduce the index of the radical and exponent with 2
815
x=3030±815
Separate the equation into 2 possible cases
x=3030+815x=3030−815
Simplify the expression
x=1515+415x=3030−815
Simplify the expression
x=1515+415x=1515−415
x=1515+210x=1515−210,x≥2x=1515+415x=1515−415,3x−6<0
Evaluate
More Steps

Evaluate
3x−6<0
Move the constant to the right side
3x<0+6
Removing 0 doesn't change the value,so remove it from the expression
3x<6
Divide both sides
33x<36
Divide the numbers
x<36
Divide the numbers
More Steps

Evaluate
36
Reduce the numbers
12
Calculate
2
x<2
x=1515+210x=1515−210,x≥2x=1515+415x=1515−415,x<2
Find the intersection
x∈∅x=1515+415x=1515−415,x<2
Find the intersection
x∈∅x=1515−415
Solution
x=1515−415
Alternative Form
x≈−0.032796
Show Solution
