Question
Solve the equation(The real numbers system)
x∈/R
Alternative Form
No real solution
Evaluate
−5x−25=5x2×5
Multiply the terms
−5x−25=25x2
Swap the sides
25x2=−5x−25
Move the expression to the left side
25x2+5x+25=0
Substitute a=25,b=5 and c=25 into the quadratic formula x=2a−b±b2−4ac
x=2×25−5±52−4×25×25
Simplify the expression
x=50−5±52−4×25×25
Simplify the expression
More Steps

Evaluate
52−4×25×25
Multiply the terms
More Steps

Multiply the terms
4×25×25
Multiply the terms
100×25
Multiply the numbers
2500
52−2500
Evaluate the power
25−2500
Subtract the numbers
−2475
x=50−5±−2475
Solution
x∈/R
Alternative Form
No real solution
Show Solution

Solve the equation(The complex numbers system)
Solve using the quadratic formula in the complex numbers system
Solve by completing the square in the complex numbers system
Solve using the PQ formula in the complex numbers system
x1=−101−10311i,x2=−101+10311i
Alternative Form
x1≈−0.1−0.994987i,x2≈−0.1+0.994987i
Evaluate
−5x−25=5x2×5
Multiply the terms
−5x−25=25x2
Swap the sides
25x2=−5x−25
Move the expression to the left side
25x2+5x+25=0
Substitute a=25,b=5 and c=25 into the quadratic formula x=2a−b±b2−4ac
x=2×25−5±52−4×25×25
Simplify the expression
x=50−5±52−4×25×25
Simplify the expression
More Steps

Evaluate
52−4×25×25
Multiply the terms
More Steps

Multiply the terms
4×25×25
Multiply the terms
100×25
Multiply the numbers
2500
52−2500
Evaluate the power
25−2500
Subtract the numbers
−2475
x=50−5±−2475
Simplify the radical expression
More Steps

Evaluate
−2475
Evaluate the power
2475×−1
Evaluate the power
2475×i
Evaluate the power
More Steps

Evaluate
2475
Write the expression as a product where the root of one of the factors can be evaluated
225×11
Write the number in exponential form with the base of 15
152×11
The root of a product is equal to the product of the roots of each factor
152×11
Reduce the index of the radical and exponent with 2
1511
1511×i
x=50−5±1511×i
Separate the equation into 2 possible cases
x=50−5+1511×ix=50−5−1511×i
Simplify the expression
More Steps

Evaluate
x=50−5+1511×i
Divide the terms
More Steps

Evaluate
50−5+1511×i
Rewrite the expression
505(−1+311×i)
Cancel out the common factor 5
10−1+311×i
Use b−a=−ba=−ba to rewrite the fraction
−101−311×i
Simplify
−101+10311i
x=−101+10311i
x=−101+10311ix=50−5−1511×i
Simplify the expression
More Steps

Evaluate
x=50−5−1511×i
Divide the terms
More Steps

Evaluate
50−5−1511×i
Rewrite the expression
505(−1−311×i)
Cancel out the common factor 5
10−1−311×i
Use b−a=−ba=−ba to rewrite the fraction
−101+311×i
Simplify
−101−10311i
x=−101−10311i
x=−101+10311ix=−101−10311i
Solution
x1=−101−10311i,x2=−101+10311i
Alternative Form
x1≈−0.1−0.994987i,x2≈−0.1+0.994987i
Show Solution
