Question
Simplify the expression
−6a2b+18c2d−8a−6b2cd
Evaluate
−6(a2b−3c2d)−(−2)(−4a−3b2cd)
Remove the parentheses
−6(a2b−3c2d)−(−2(−4a−3b2cd))
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−6(a2b−3c2d)+2(−4a−3b2cd)
Expand the expression
More Steps

Calculate
−6(a2b−3c2d)
Apply the distributive property
−6a2b−(−6×3c2d)
Multiply the numbers
−6a2b−(−18c2d)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−6a2b+18c2d
−6a2b+18c2d+2(−4a−3b2cd)
Solution
More Steps

Calculate
2(−4a−3b2cd)
Apply the distributive property
2(−4a)−2×3b2cd
Multiply the numbers
More Steps

Evaluate
2(−4)
Multiplying or dividing an odd number of negative terms equals a negative
−2×4
Multiply the numbers
−8
−8a−2×3b2cd
Multiply the numbers
−8a−6b2cd
−6a2b+18c2d−8a−6b2cd
Show Solution

Factor the expression
−2(3a2b−9c2d+4a+3b2cd)
Evaluate
−6(a2b−3c2d)−(−2)(−4a−3b2cd)
Remove the parentheses
−6(a2b−3c2d)−(−2(−4a−3b2cd))
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−6(a2b−3c2d)+2(−4a−3b2cd)
Simplify
More Steps

Evaluate
−6(a2b−3c2d)
Apply the distributive property
−6a2b−6(−3c2d)
Multiply the terms
More Steps

Evaluate
−6(−3)
Multiplying or dividing an even number of negative terms equals a positive
6×3
Multiply the numbers
18
−6a2b+18c2d
−6a2b+18c2d+2(−4a−3b2cd)
Simplify
More Steps

Evaluate
2(−4a−3b2cd)
Apply the distributive property
2(−4a)+2(−3b2cd)
Multiply the terms
More Steps

Evaluate
2(−4)
Multiplying or dividing an odd number of negative terms equals a negative
−2×4
Multiply the numbers
−8
−8a+2(−3b2cd)
Multiply the terms
More Steps

Evaluate
2(−3)
Multiplying or dividing an odd number of negative terms equals a negative
−2×3
Multiply the numbers
−6
−8a−6b2cd
−6a2b+18c2d−8a−6b2cd
Solution
−2(3a2b−9c2d+4a+3b2cd)
Show Solution
