Question
Simplify the expression
−6g2−29−9g
Evaluate
−6g2−6−6−9g−9−8
Solution
−6g2−29−9g
Show Solution

Find the roots
g1=−43−12615i,g2=−43+12615i
Alternative Form
g1≈−0.75−2.066599i,g2≈−0.75+2.066599i
Evaluate
−6g2−6−6−9g−9−8
To find the roots of the expression,set the expression equal to 0
−6g2−6−6−9g−9−8=0
Subtract the numbers
−6g2−12−9g−9−8=0
Subtract the numbers
−6g2−21−9g−8=0
Subtract the numbers
−6g2−29−9g=0
Rewrite in standard form
−6g2−9g−29=0
Multiply both sides
6g2+9g+29=0
Substitute a=6,b=9 and c=29 into the quadratic formula g=2a−b±b2−4ac
g=2×6−9±92−4×6×29
Simplify the expression
g=12−9±92−4×6×29
Simplify the expression
More Steps

Evaluate
92−4×6×29
Multiply the terms
More Steps

Multiply the terms
4×6×29
Multiply the terms
24×29
Multiply the numbers
696
92−696
Evaluate the power
81−696
Subtract the numbers
−615
g=12−9±−615
Simplify the radical expression
More Steps

Evaluate
−615
Evaluate the power
615×−1
Evaluate the power
615×i
g=12−9±615×i
Separate the equation into 2 possible cases
g=12−9+615×ig=12−9−615×i
Simplify the expression
More Steps

Evaluate
g=12−9+615×i
Divide the terms
More Steps

Evaluate
12−9+615×i
Use b−a=−ba=−ba to rewrite the fraction
−129−615×i
Simplify
−43+12615i
g=−43+12615i
g=−43+12615ig=12−9−615×i
Simplify the expression
More Steps

Evaluate
g=12−9−615×i
Divide the terms
More Steps

Evaluate
12−9−615×i
Use b−a=−ba=−ba to rewrite the fraction
−129+615×i
Simplify
−43−12615i
g=−43−12615i
g=−43+12615ig=−43−12615i
Solution
g1=−43−12615i,g2=−43+12615i
Alternative Form
g1≈−0.75−2.066599i,g2≈−0.75+2.066599i
Show Solution
