Question
Simplify the expression
−6u6−1176u12
Evaluate
−6u6−14u5×6u4×14u3
Solution
More Steps

Evaluate
14u5×6u4×14u3
Multiply the terms
More Steps

Evaluate
14×6×14
Multiply the terms
84×14
Multiply the numbers
1176
1176u5×u4×u3
Multiply the terms with the same base by adding their exponents
1176u5+4+3
Add the numbers
1176u12
−6u6−1176u12
Show Solution

Factor the expression
−6u6(1+196u6)
Evaluate
−6u6−14u5×6u4×14u3
Multiply
More Steps

Evaluate
14u5×6u4×14u3
Multiply the terms
More Steps

Evaluate
14×6×14
Multiply the terms
84×14
Multiply the numbers
1176
1176u5×u4×u3
Multiply the terms with the same base by adding their exponents
1176u5+4+3
Add the numbers
1176u12
−6u6−1176u12
Rewrite the expression
−6u6−6u6×196u6
Solution
−6u6(1+196u6)
Show Solution

Find the roots
u1=−2861037232+283196i,u2=2861037232−283196i,u3=0
Alternative Form
u1≈−0.359325+0.207457i,u2≈0.359325−0.207457i,u3=0
Evaluate
−6u6−14u5×6u4×14u3
To find the roots of the expression,set the expression equal to 0
−6u6−14u5×6u4×14u3=0
Multiply
More Steps

Multiply the terms
14u5×6u4×14u3
Multiply the terms
More Steps

Evaluate
14×6×14
Multiply the terms
84×14
Multiply the numbers
1176
1176u5×u4×u3
Multiply the terms with the same base by adding their exponents
1176u5+4+3
Add the numbers
1176u12
−6u6−1176u12=0
Factor the expression
−6u6(1+196u6)=0
Divide both sides
u6(1+196u6)=0
Separate the equation into 2 possible cases
u6=01+196u6=0
The only way a power can be 0 is when the base equals 0
u=01+196u6=0
Solve the equation
More Steps

Evaluate
1+196u6=0
Move the constant to the right-hand side and change its sign
196u6=0−1
Removing 0 doesn't change the value,so remove it from the expression
196u6=−1
Divide both sides
196196u6=196−1
Divide the numbers
u6=196−1
Use b−a=−ba=−ba to rewrite the fraction
u6=−1961
Take the root of both sides of the equation and remember to use both positive and negative roots
u=±6−1961
Simplify the expression
More Steps

Evaluate
6−1961
To take a root of a fraction,take the root of the numerator and denominator separately
6−19661
Simplify the radical expression
6−1961
Simplify the radical expression
265292+2314i1
Multiply by the Conjugate
(265292+2314i)(265292−2314i)265292−2314i
Calculate
3196265292−2314i
Simplify
2319665292−23141i
Rearrange the numbers
2861037232−23141i
Rearrange the numbers
2861037232−283196i
u=±(2861037232−283196i)
Separate the equation into 2 possible cases
u=2861037232−283196iu=−2861037232+283196i
u=0u=2861037232−283196iu=−2861037232+283196i
Solution
u1=−2861037232+283196i,u2=2861037232−283196i,u3=0
Alternative Form
u1≈−0.359325+0.207457i,u2≈0.359325−0.207457i,u3=0
Show Solution
