Question
Solve the equation
Solve for x
Solve for y
x=72y5
Evaluate
−6x×12y=−5
Multiply the terms
−72xy=−5
Rewrite the expression
−72yx=−5
Divide both sides
−72y−72yx=−72y−5
Divide the numbers
x=−72y−5
Solution
x=72y5
Show Solution

Testing for symmetry
Testing for symmetry about the origin
Testing for symmetry about the x-axis
Testing for symmetry about the y-axis
Symmetry with respect to the origin
Evaluate
−6x×12y=−5
Multiply the terms
−72xy=−5
To test if the graph of −72xy=−5 is symmetry with respect to the origin,substitute -x for x and -y for y
−72(−x)(−y)=−5
Evaluate
−72xy=−5
Solution
Symmetry with respect to the origin
Show Solution

Rewrite the equation
r=6∣sin(2θ)∣5sin(2θ)r=−6∣sin(2θ)∣5sin(2θ)
Evaluate
−6x×12y=−5
Evaluate
−72xy=−5
To convert the equation to polar coordinates,substitute x for rcos(θ) and y for rsin(θ)
−72cos(θ)×rsin(θ)×r=−5
Factor the expression
−72cos(θ)sin(θ)×r2=−5
Simplify the expression
−36sin(2θ)×r2=−5
Divide the terms
r2=36sin(2θ)5
Evaluate the power
r=±36sin(2θ)5
Simplify the expression
More Steps

Evaluate
36sin(2θ)5
To take a root of a fraction,take the root of the numerator and denominator separately
36sin(2θ)5
Simplify the radical expression
More Steps

Evaluate
36sin(2θ)
Write the number in exponential form with the base of 6
62sin(2θ)
Calculate
6sin(2θ)
6sin(2θ)5
Multiply by the Conjugate
6sin(2θ)×sin(2θ)5×sin(2θ)
Calculate
6∣sin(2θ)∣5×sin(2θ)
The product of roots with the same index is equal to the root of the product
6∣sin(2θ)∣5sin(2θ)
r=±6∣sin(2θ)∣5sin(2θ)
Solution
r=6∣sin(2θ)∣5sin(2θ)r=−6∣sin(2θ)∣5sin(2θ)
Show Solution

Find the first derivative
Find the derivative with respect to x
Find the derivative with respect to y
dxdy=−xy
Calculate
−6x12y=−5
Simplify the expression
−72xy=−5
Take the derivative of both sides
dxd(−72xy)=dxd(−5)
Calculate the derivative
More Steps

Evaluate
dxd(−72xy)
Use differentiation rules
dxd(−72x)×y−72x×dxd(y)
Evaluate the derivative
More Steps

Evaluate
dxd(−72x)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
−72×dxd(x)
Use dxdxn=nxn−1 to find derivative
−72×1
Any expression multiplied by 1 remains the same
−72
−72y−72x×dxd(y)
Evaluate the derivative
More Steps

Evaluate
dxd(y)
Use differentiation rules
dyd(y)×dxdy
Use dxdxn=nxn−1 to find derivative
dxdy
−72y−72xdxdy
−72y−72xdxdy=dxd(−5)
Calculate the derivative
−72y−72xdxdy=0
Move the expression to the right-hand side and change its sign
−72xdxdy=0+72y
Add the terms
−72xdxdy=72y
Divide both sides
−72x−72xdxdy=−72x72y
Divide the numbers
dxdy=−72x72y
Solution
More Steps

Evaluate
−72x72y
Cancel out the common factor 72
−xy
Use b−a=−ba=−ba to rewrite the fraction
−xy
dxdy=−xy
Show Solution

Find the second derivative
Find the second derivative with respect to x
Find the second derivative with respect to y
dx2d2y=x22y
Calculate
−6x12y=−5
Simplify the expression
−72xy=−5
Take the derivative of both sides
dxd(−72xy)=dxd(−5)
Calculate the derivative
More Steps

Evaluate
dxd(−72xy)
Use differentiation rules
dxd(−72x)×y−72x×dxd(y)
Evaluate the derivative
More Steps

Evaluate
dxd(−72x)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
−72×dxd(x)
Use dxdxn=nxn−1 to find derivative
−72×1
Any expression multiplied by 1 remains the same
−72
−72y−72x×dxd(y)
Evaluate the derivative
More Steps

Evaluate
dxd(y)
Use differentiation rules
dyd(y)×dxdy
Use dxdxn=nxn−1 to find derivative
dxdy
−72y−72xdxdy
−72y−72xdxdy=dxd(−5)
Calculate the derivative
−72y−72xdxdy=0
Move the expression to the right-hand side and change its sign
−72xdxdy=0+72y
Add the terms
−72xdxdy=72y
Divide both sides
−72x−72xdxdy=−72x72y
Divide the numbers
dxdy=−72x72y
Divide the numbers
More Steps

Evaluate
−72x72y
Cancel out the common factor 72
−xy
Use b−a=−ba=−ba to rewrite the fraction
−xy
dxdy=−xy
Take the derivative of both sides
dxd(dxdy)=dxd(−xy)
Calculate the derivative
dx2d2y=dxd(−xy)
Use differentiation rules
dx2d2y=−x2dxd(y)×x−y×dxd(x)
Calculate the derivative
More Steps

Evaluate
dxd(y)
Use differentiation rules
dyd(y)×dxdy
Use dxdxn=nxn−1 to find derivative
dxdy
dx2d2y=−x2dxdy×x−y×dxd(x)
Use dxdxn=nxn−1 to find derivative
dx2d2y=−x2dxdy×x−y×1
Use the commutative property to reorder the terms
dx2d2y=−x2xdxdy−y×1
Any expression multiplied by 1 remains the same
dx2d2y=−x2xdxdy−y
Use equation dxdy=−xy to substitute
dx2d2y=−x2x(−xy)−y
Solution
More Steps

Calculate
−x2x(−xy)−y
Multiply the terms
More Steps

Evaluate
x(−xy)
Multiplying or dividing an odd number of negative terms equals a negative
−x×xy
Cancel out the common factor x
−1×y
Multiply the terms
−y
−x2−y−y
Subtract the terms
More Steps

Simplify
−y−y
Collect like terms by calculating the sum or difference of their coefficients
(−1−1)y
Subtract the numbers
−2y
−x2−2y
Divide the terms
−(−x22y)
Calculate
x22y
dx2d2y=x22y
Show Solution

Conic
365(x′)2−365(y′)2=1
Evaluate
−6x×12y=−5
Move the expression to the left side
−6x×12y−(−5)=0
Calculate
More Steps

Calculate
−6x×12y−(−5)
Multiply the terms
−72xy−(−5)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−72xy+5
−72xy+5=0
The coefficients A,B and C of the general equation are A=0,B=−72 and C=0
A=0B=−72C=0
To find the angle of rotation θ,substitute the values of A,B and C into the formula cot(2θ)=BA−C
cot(2θ)=−720−0
Calculate
cot(2θ)=0
Using the unit circle,find the smallest positive angle for which the cotangent is 0
2θ=2π
Calculate
θ=4π
To rotate the axes,use the equation of rotation and substitute 4π for θ
x=x′cos(4π)−y′sin(4π)y=x′sin(4π)+y′cos(4π)
Calculate
x=x′×22−y′sin(4π)y=x′sin(4π)+y′cos(4π)
Calculate
x=x′×22−y′×22y=x′sin(4π)+y′cos(4π)
Calculate
x=x′×22−y′×22y=x′×22+y′cos(4π)
Calculate
x=x′×22−y′×22y=x′×22+y′×22
Substitute x and y into the original equation −72xy+5=0
−72(x′×22−y′×22)(x′×22+y′×22)+5=0
Calculate
More Steps

Calculate
−72(x′×22−y′×22)(x′×22+y′×22)+5
Use the commutative property to reorder the terms
−72(22x′−y′×22)(x′×22+y′×22)+5
Use the commutative property to reorder the terms
−72(22x′−22y′)(x′×22+y′×22)+5
Use the commutative property to reorder the terms
−72(22x′−22y′)(22x′+y′×22)+5
Use the commutative property to reorder the terms
−72(22x′−22y′)(22x′+22y′)+5
Expand the expression
More Steps

Calculate
−72(22x′−22y′)(22x′+22y′)
Simplify
(−362×x′+362×y′)(22x′+22y′)
Apply the distributive property
−362×x′×22x′−362×x′×22y′+362×y′×22x′+362×y′×22y′
Multiply the terms
−36(x′)2−362×x′×22y′+362×y′×22x′+362×y′×22y′
Multiply the numbers
−36(x′)2−36x′y′+362×y′×22x′+362×y′×22y′
Multiply the numbers
−36(x′)2−36x′y′+36y′x′+362×y′×22y′
Multiply the terms
−36(x′)2−36x′y′+36y′x′+36(y′)2
Add the terms
−36(x′)2+0+36(y′)2
Removing 0 doesn't change the value,so remove it from the expression
−36(x′)2+36(y′)2
−36(x′)2+36(y′)2+5
−36(x′)2+36(y′)2+5=0
Move the constant to the right-hand side and change its sign
−36(x′)2+36(y′)2=0−5
Removing 0 doesn't change the value,so remove it from the expression
−36(x′)2+36(y′)2=−5
Multiply both sides of the equation by −51
(−36(x′)2+36(y′)2)(−51)=−5(−51)
Multiply the terms
More Steps

Evaluate
(−36(x′)2+36(y′)2)(−51)
Use the the distributive property to expand the expression
−36(x′)2(−51)+36(y′)2(−51)
Multiply the numbers
More Steps

Evaluate
−36(−51)
Multiplying or dividing an even number of negative terms equals a positive
36×51
Multiply the numbers
536
536(x′)2+36(y′)2(−51)
Multiply the numbers
More Steps

Evaluate
36(−51)
Multiplying or dividing an odd number of negative terms equals a negative
−36×51
Multiply the numbers
−536
536(x′)2−536(y′)2
536(x′)2−536(y′)2=−5(−51)
Multiply the terms
More Steps

Evaluate
−5(−51)
Multiplying or dividing an even number of negative terms equals a positive
5×51
Reduce the numbers
1×1
Simplify
1
536(x′)2−536(y′)2=1
Use a=a11 to transform the expression
365(x′)2−536(y′)2=1
Solution
365(x′)2−365(y′)2=1
Show Solution
