Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
y1=−8344+2518,y2=834−4+2518
Alternative Form
y1≈−0.064964,y2≈0.055371
Evaluate
−6y×139y=8y−3
Multiply
More Steps

Evaluate
−6y×139y
Multiply the terms
−834y×y
Multiply the terms
−834y2
−834y2=8y−3
Move the expression to the left side
−834y2−8y+3=0
Multiply both sides
834y2+8y−3=0
Substitute a=834,b=8 and c=−3 into the quadratic formula y=2a−b±b2−4ac
y=2×834−8±82−4×834(−3)
Simplify the expression
y=1668−8±82−4×834(−3)
Simplify the expression
More Steps

Evaluate
82−4×834(−3)
Multiply
More Steps

Multiply the terms
4×834(−3)
Rewrite the expression
−4×834×3
Multiply the terms
−10008
82−(−10008)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
82+10008
Evaluate the power
64+10008
Add the numbers
10072
y=1668−8±10072
Simplify the radical expression
More Steps

Evaluate
10072
Write the expression as a product where the root of one of the factors can be evaluated
4×2518
Write the number in exponential form with the base of 2
22×2518
The root of a product is equal to the product of the roots of each factor
22×2518
Reduce the index of the radical and exponent with 2
22518
y=1668−8±22518
Separate the equation into 2 possible cases
y=1668−8+22518y=1668−8−22518
Simplify the expression
More Steps

Evaluate
y=1668−8+22518
Divide the terms
More Steps

Evaluate
1668−8+22518
Rewrite the expression
16682(−4+2518)
Cancel out the common factor 2
834−4+2518
y=834−4+2518
y=834−4+2518y=1668−8−22518
Simplify the expression
More Steps

Evaluate
y=1668−8−22518
Divide the terms
More Steps

Evaluate
1668−8−22518
Rewrite the expression
16682(−4−2518)
Cancel out the common factor 2
834−4−2518
Use b−a=−ba=−ba to rewrite the fraction
−8344+2518
y=−8344+2518
y=834−4+2518y=−8344+2518
Solution
y1=−8344+2518,y2=834−4+2518
Alternative Form
y1≈−0.064964,y2≈0.055371
Show Solution
