Question
Solve the inequality
−1.762205<z<1.478765
Alternative Form
z∈(−1.762205,1.478765)
Evaluate
−6z−4(2z−7)>4z4−8z
Move the expression to the left side
−6z−4(2z−7)−(4z4−8z)>0
Subtract the terms
More Steps

Evaluate
−6z−4(2z−7)−(4z4−8z)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−6z−4(2z−7)−4z4+8z
Expand the expression
More Steps

Calculate
−4(2z−7)
Apply the distributive property
−4×2z−(−4×7)
Multiply the numbers
−8z−(−4×7)
Multiply the numbers
−8z−(−28)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−8z+28
−6z−8z+28−4z4+8z
Calculate the sum or difference
More Steps

Evaluate
−6z−8z+8z
Collect like terms by calculating the sum or difference of their coefficients
(−6−8+8)z
Calculate the sum or difference
−6z
−6z+28−4z4
−6z+28−4z4>0
Rewrite the expression
−6z+28−4z4=0
Factor the expression
−2(3z−14+2z4)=0
Divide both sides
3z−14+2z4=0
Calculate
z≈−1.762205z≈1.478765
Determine the test intervals using the critical values
z<−1.762205−1.762205<z<1.478765z>1.478765
Choose a value form each interval
z1=−3z2=0z3=2
To determine if z<−1.762205 is the solution to the inequality,test if the chosen value z=−3 satisfies the initial inequality
More Steps

Evaluate
−6(−3)−4(2(−3)−7)>4(−3)4−8(−3)
Simplify
More Steps

Evaluate
−6(−3)−4(2(−3)−7)
Multiply the numbers
−6(−3)−4(−6−7)
Subtract the numbers
−6(−3)−4(−13)
Multiply the numbers
18−4(−13)
Multiply the numbers
18+52
Add the numbers
70
70>4(−3)4−8(−3)
Simplify
More Steps

Evaluate
4(−3)4−8(−3)
Multiply the terms
324−8(−3)
Multiply the numbers
324−(−24)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
324+24
Add the numbers
348
70>348
Check the inequality
false
z<−1.762205 is not a solutionz2=0z3=2
To determine if −1.762205<z<1.478765 is the solution to the inequality,test if the chosen value z=0 satisfies the initial inequality
More Steps

Evaluate
−6×0−4(2×0−7)>4×04−8×0
Any expression multiplied by 0 equals 0
−6×0−4(0−7)>4×04−8×0
Any expression multiplied by 0 equals 0
0−4(0−7)>4×04−8×0
Any expression multiplied by 0 equals 0
0−4(0−7)>4×04−0
Simplify
More Steps

Evaluate
0−4(0−7)
Removing 0 doesn't change the value,so remove it from the expression
0−4(−7)
Multiply the numbers
0+28
Removing 0 doesn't change the value,so remove it from the expression
28
28>4×04−0
Simplify
More Steps

Evaluate
4×04−0
Calculate
4×0−0
Any expression multiplied by 0 equals 0
0−0
Subtract the terms
0
28>0
Check the inequality
true
z<−1.762205 is not a solution−1.762205<z<1.478765 is the solutionz3=2
To determine if z>1.478765 is the solution to the inequality,test if the chosen value z=2 satisfies the initial inequality
More Steps

Evaluate
−6×2−4(2×2−7)>4×24−8×2
Simplify
More Steps

Evaluate
−6×2−4(2×2−7)
Multiply the numbers
−6×2−4(4−7)
Subtract the numbers
−6×2−4(−3)
Multiply the numbers
−12−4(−3)
Multiply the numbers
−12+12
Add the numbers
0
0>4×24−8×2
Simplify
More Steps

Evaluate
4×24−8×2
Multiply the terms
26−8×2
Multiply the numbers
26−16
Evaluate the power
64−16
Subtract the numbers
48
0>48
Check the inequality
false
z<−1.762205 is not a solution−1.762205<z<1.478765 is the solutionz>1.478765 is not a solution
Solution
−1.762205<z<1.478765
Alternative Form
z∈(−1.762205,1.478765)
Show Solution
