Question
Simplify the expression
42k4−4k
Evaluate
−7(−6k4)−4k
Solution
More Steps

Evaluate
−7(−6)
Multiplying or dividing an even number of negative terms equals a positive
7×6
Multiply the numbers
42
42k4−4k
Show Solution

Factor the expression
2k(21k3−2)
Evaluate
−7(−6k4)−4k
Multiply the numbers
More Steps

Evaluate
−7(−6)
Multiplying or dividing an even number of negative terms equals a positive
7×6
Multiply the numbers
42
Evaluate
42k4
42k4−4k
Rewrite the expression
2k×21k3−2k×2
Solution
2k(21k3−2)
Show Solution

Find the roots
k1=0,k2=213882
Alternative Form
k1=0,k2≈0.456671
Evaluate
−7(−6k4)−4k
To find the roots of the expression,set the expression equal to 0
−7(−6k4)−4k=0
Multiply the numbers
More Steps

Evaluate
−7(−6)
Multiplying or dividing an even number of negative terms equals a positive
7×6
Multiply the numbers
42
42k4−4k=0
Factor the expression
2k(21k3−2)=0
Divide both sides
k(21k3−2)=0
Separate the equation into 2 possible cases
k=021k3−2=0
Solve the equation
More Steps

Evaluate
21k3−2=0
Move the constant to the right-hand side and change its sign
21k3=0+2
Removing 0 doesn't change the value,so remove it from the expression
21k3=2
Divide both sides
2121k3=212
Divide the numbers
k3=212
Take the 3-th root on both sides of the equation
3k3=3212
Calculate
k=3212
Simplify the root
More Steps

Evaluate
3212
To take a root of a fraction,take the root of the numerator and denominator separately
32132
Multiply by the Conjugate
321×321232×3212
Simplify
321×321232×3441
Multiply the numbers
321×32123882
Multiply the numbers
213882
k=213882
k=0k=213882
Solution
k1=0,k2=213882
Alternative Form
k1=0,k2≈0.456671
Show Solution
