Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
u1=−1253+2893,u2=12−53+2893
Alternative Form
u1≈−8.898885,u2≈0.065551
Evaluate
−7−2u×7=3(−u−10)×4u
Multiply the terms
−7−14u=3(−u−10)×4u
Multiply
More Steps

Evaluate
3(−u−10)×4u
Multiply the terms
12(−u−10)u
Multiply the terms
12u(−u−10)
−7−14u=12u(−u−10)
Swap the sides
12u(−u−10)=−7−14u
Expand the expression
More Steps

Evaluate
12u(−u−10)
Apply the distributive property
12u(−u)−12u×10
Multiply the terms
More Steps

Evaluate
12u(−u)
Multiply the numbers
−12u×u
Multiply the terms
−12u2
−12u2−12u×10
Multiply the numbers
−12u2−120u
−12u2−120u=−7−14u
Move the expression to the left side
−12u2−106u+7=0
Multiply both sides
12u2+106u−7=0
Substitute a=12,b=106 and c=−7 into the quadratic formula u=2a−b±b2−4ac
u=2×12−106±1062−4×12(−7)
Simplify the expression
u=24−106±1062−4×12(−7)
Simplify the expression
More Steps

Evaluate
1062−4×12(−7)
Multiply
More Steps

Multiply the terms
4×12(−7)
Rewrite the expression
−4×12×7
Multiply the terms
−336
1062−(−336)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
1062+336
Evaluate the power
11236+336
Add the numbers
11572
u=24−106±11572
Simplify the radical expression
More Steps

Evaluate
11572
Write the expression as a product where the root of one of the factors can be evaluated
4×2893
Write the number in exponential form with the base of 2
22×2893
The root of a product is equal to the product of the roots of each factor
22×2893
Reduce the index of the radical and exponent with 2
22893
u=24−106±22893
Separate the equation into 2 possible cases
u=24−106+22893u=24−106−22893
Simplify the expression
More Steps

Evaluate
u=24−106+22893
Divide the terms
More Steps

Evaluate
24−106+22893
Rewrite the expression
242(−53+2893)
Cancel out the common factor 2
12−53+2893
u=12−53+2893
u=12−53+2893u=24−106−22893
Simplify the expression
More Steps

Evaluate
u=24−106−22893
Divide the terms
More Steps

Evaluate
24−106−22893
Rewrite the expression
242(−53−2893)
Cancel out the common factor 2
12−53−2893
Use b−a=−ba=−ba to rewrite the fraction
−1253+2893
u=−1253+2893
u=12−53+2893u=−1253+2893
Solution
u1=−1253+2893,u2=12−53+2893
Alternative Form
u1≈−8.898885,u2≈0.065551
Show Solution
