Question  
 Solve the equation
u1=−748232,u2=748232
Alternative Form
 u1≈−1.36075,u2≈1.36075
Evaluate
−7u3×u=−5−19
Multiply
        More Steps
        
Evaluate
−7u3×u
Multiply the terms with the same base by adding their exponents
−7u3+1
Add the numbers
−7u4
−7u4=−5−19
Subtract the numbers
−7u4=−24
Change the signs on both sides of the equation
7u4=24
Divide both sides
77u4=724
Divide the numbers
u4=724
Take the root of both sides of the equation and remember to use both positive and negative roots
u=±4724
Simplify the expression
        More Steps
        
Evaluate
4724
To take a root of a fraction,take the root of the numerator and denominator separately
47424
Multiply by the Conjugate
47×473424×473
Simplify
47×473424×4343
Multiply the numbers
        More Steps
        
Evaluate
424×4343
The product of roots with the same index is equal to the root of the product
424×343
Calculate the product
48232
47×47348232
Multiply the numbers
        More Steps
        
Evaluate
47×473
The product of roots with the same index is equal to the root of the product
47×73
Calculate the product
474
Reduce the index of the radical and exponent with 4
7
748232
u=±748232
Separate the equation into 2 possible cases
u=748232u=−748232
Solution
u1=−748232,u2=748232
Alternative Form
u1≈−1.36075,u2≈1.36075
        Show Solution
        