Question
Simplify the expression
−441x6−9
Evaluate
−7x3×21x2×3x−9
Solution
More Steps

Evaluate
−7x3×21x2×3x
Multiply the terms
More Steps

Evaluate
7×21×3
Multiply the terms
147×3
Multiply the numbers
441
−441x3×x2×x
Multiply the terms with the same base by adding their exponents
−441x3+2+1
Add the numbers
−441x6
−441x6−9
Show Solution

Factor the expression
−9(49x6+1)
Evaluate
−7x3×21x2×3x−9
Multiply
More Steps

Evaluate
−7x3×21x2×3x
Multiply the terms
More Steps

Evaluate
7×21×3
Multiply the terms
147×3
Multiply the numbers
441
−441x3×x2×x
Multiply the terms with the same base by adding their exponents
−441x3+2+1
Add the numbers
−441x6
−441x6−9
Solution
−9(49x6+1)
Show Solution

Find the roots
x1=−14664827+14349i,x2=14664827−14349i
Alternative Form
x1≈−0.452722+0.261379i,x2≈0.452722−0.261379i
Evaluate
−7x3×21x2×3x−9
To find the roots of the expression,set the expression equal to 0
−7x3×21x2×3x−9=0
Multiply
More Steps

Multiply the terms
−7x3×21x2×3x
Multiply the terms
More Steps

Evaluate
7×21×3
Multiply the terms
147×3
Multiply the numbers
441
−441x3×x2×x
Multiply the terms with the same base by adding their exponents
−441x3+2+1
Add the numbers
−441x6
−441x6−9=0
Move the constant to the right-hand side and change its sign
−441x6=0+9
Removing 0 doesn't change the value,so remove it from the expression
−441x6=9
Change the signs on both sides of the equation
441x6=−9
Divide both sides
441441x6=441−9
Divide the numbers
x6=441−9
Divide the numbers
More Steps

Evaluate
441−9
Cancel out the common factor 9
49−1
Use b−a=−ba=−ba to rewrite the fraction
−491
x6=−491
Take the root of both sides of the equation and remember to use both positive and negative roots
x=±6−491
Simplify the expression
More Steps

Evaluate
6−491
To take a root of a fraction,take the root of the numerator and denominator separately
6−4961
Simplify the radical expression
6−491
Simplify the radical expression
More Steps

Evaluate
6−49
Rewrite the expression
37×(23+21i)
Apply the distributive property
37×23+37×21i
Multiply the numbers
261323+37×21i
Multiply the numbers
261323+237i
261323+237i1
Multiply by the Conjugate
(261323+237i)(261323−237i)261323−237i
Calculate
More Steps

Evaluate
(261323+237i)(261323−237i)
Use (a+b)(a−b)=a2−b2 to simplify the product
(261323)2−(237i)2
Evaluate the power
43349−(237i)2
Evaluate the power
43349−(−4349)
Calculate
349
349261323−237i
Simplify
234961323−2371i
Rearrange the numbers
More Steps

Evaluate
234961323
Multiply by the Conjugate
2349×349261323×3492
Simplify
2349×349261323×737
Multiply the numbers
2349×34927664827
Multiply the numbers
987664827
Cancel out the common factor 7
14664827
14664827−2371i
Rearrange the numbers
More Steps

Evaluate
−2371
Multiply by the Conjugate
237×372−372
Simplify
237×372−349
Multiply the numbers
14−349
Calculate
−14349
14664827−14349i
x=±(14664827−14349i)
Separate the equation into 2 possible cases
x=14664827−14349ix=−14664827+14349i
Solution
x1=−14664827+14349i,x2=14664827−14349i
Alternative Form
x1≈−0.452722+0.261379i,x2≈0.452722−0.261379i
Show Solution
