Question
Simplify the expression
−14x−433−132x2
Evaluate
−7x−1−7x−132x×1×x−4−21×4−21×25
Multiply the terms
More Steps

Multiply the terms
−132x×1×x
Rewrite the expression
−132x×x
Multiply the terms
−132x2
−7x−1−7x−132x2−4−21×4−21×25
Multiply the numbers
More Steps

Evaluate
−21×4
Reduce the numbers
−1×2
Simplify
−2
−7x−1−7x−132x2−4−2−21×25
Multiply the numbers
More Steps

Evaluate
−21×25
To multiply the fractions,multiply the numerators and denominators separately
−2×25
Multiply the numbers
−45
−7x−1−7x−132x2−4−2−45
Subtract the terms
More Steps

Evaluate
−7x−7x
Collect like terms by calculating the sum or difference of their coefficients
(−7−7)x
Subtract the numbers
−14x
−14x−1−132x2−4−2−45
Subtract the numbers
−14x−7−132x2−45
Solution
More Steps

Evaluate
−7−45
Reduce fractions to a common denominator
−47×4−45
Write all numerators above the common denominator
4−7×4−5
Multiply the numbers
4−28−5
Subtract the numbers
4−33
Use b−a=−ba=−ba to rewrite the fraction
−433
−14x−433−132x2
Show Solution

Factor the expression
−41(56x+33+528x2)
Evaluate
−7x−1−7x−132x×1×x−4−21×4−21×25
Multiply the terms
More Steps

Multiply the terms
132x×1×x
Rewrite the expression
132x×x
Multiply the terms
132x2
−7x−1−7x−132x2−4−21×4−21×25
Multiply the numbers
More Steps

Evaluate
21×4
Reduce the numbers
1×2
Simplify
2
−7x−1−7x−132x2−4−2−21×25
Multiply the numbers
More Steps

Evaluate
21×25
To multiply the fractions,multiply the numerators and denominators separately
2×25
Multiply the numbers
45
−7x−1−7x−132x2−4−2−45
Subtract the terms
More Steps

Simplify
−7x−1−7x
Subtract the terms
More Steps

Evaluate
−7x−7x
Collect like terms by calculating the sum or difference of their coefficients
(−7−7)x
Subtract the numbers
−14x
−14x−1
−14x−1−132x2−4−2−45
Subtract the numbers
−14x−5−132x2−2−45
Subtract the numbers
−14x−7−132x2−45
Subtract the numbers
More Steps

Evaluate
−7−45
Reduce fractions to a common denominator
−47×4−45
Write all numerators above the common denominator
4−7×4−5
Multiply the numbers
4−28−5
Subtract the numbers
4−33
Use b−a=−ba=−ba to rewrite the fraction
−433
−14x−433−132x2
Solution
−41(56x+33+528x2)
Show Solution

Find the roots
x1=−1327−3365i,x2=−1327+3365i
Alternative Form
x1≈−0.053˙0˙−0.244311i,x2≈−0.053˙0˙+0.244311i
Evaluate
−7x−1−7x−132x×1×x−4−21×4−21×25
To find the roots of the expression,set the expression equal to 0
−7x−1−7x−132x×1×x−4−21×4−21×25=0
Multiply the terms
More Steps

Multiply the terms
132x×1×x
Rewrite the expression
132x×x
Multiply the terms
132x2
−7x−1−7x−132x2−4−21×4−21×25=0
Subtract the terms
More Steps

Simplify
−7x−1−7x
Subtract the terms
More Steps

Evaluate
−7x−7x
Collect like terms by calculating the sum or difference of their coefficients
(−7−7)x
Subtract the numbers
−14x
−14x−1
−14x−1−132x2−4−21×4−21×25=0
Multiply the numbers
More Steps

Evaluate
21×4
Reduce the numbers
1×2
Simplify
2
−14x−1−132x2−4−2−21×25=0
Subtract the numbers
−14x−5−132x2−2−21×25=0
Multiply the numbers
More Steps

Evaluate
21×25
To multiply the fractions,multiply the numerators and denominators separately
2×25
Multiply the numbers
45
−14x−5−132x2−2−45=0
Subtract the numbers
−14x−7−132x2−45=0
Subtract the numbers
More Steps

Simplify
−14x−7−132x2−45
Subtract the numbers
More Steps

Evaluate
−7−45
Reduce fractions to a common denominator
−47×4−45
Write all numerators above the common denominator
4−7×4−5
Multiply the numbers
4−28−5
Subtract the numbers
4−33
Use b−a=−ba=−ba to rewrite the fraction
−433
−14x−433−132x2
−14x−433−132x2=0
Rewrite in standard form
−132x2−14x−433=0
Multiply both sides
132x2+14x+433=0
Multiply both sides
4(132x2+14x+433)=4×0
Calculate
528x2+56x+33=0
Substitute a=528,b=56 and c=33 into the quadratic formula x=2a−b±b2−4ac
x=2×528−56±562−4×528×33
Simplify the expression
x=1056−56±562−4×528×33
Simplify the expression
More Steps

Evaluate
562−4×528×33
Multiply the terms
More Steps

Multiply the terms
4×528×33
Multiply the terms
2112×33
Multiply the numbers
69696
562−69696
Evaluate the power
3136−69696
Subtract the numbers
−66560
x=1056−56±−66560
Simplify the radical expression
More Steps

Evaluate
−66560
Evaluate the power
66560×−1
Evaluate the power
66560×i
Evaluate the power
More Steps

Evaluate
66560
Write the expression as a product where the root of one of the factors can be evaluated
1024×65
Write the number in exponential form with the base of 32
322×65
The root of a product is equal to the product of the roots of each factor
322×65
Reduce the index of the radical and exponent with 2
3265
3265×i
x=1056−56±3265×i
Separate the equation into 2 possible cases
x=1056−56+3265×ix=1056−56−3265×i
Simplify the expression
More Steps

Evaluate
x=1056−56+3265×i
Divide the terms
More Steps

Evaluate
1056−56+3265×i
Rewrite the expression
10568(−7+465×i)
Cancel out the common factor 8
132−7+465×i
Use b−a=−ba=−ba to rewrite the fraction
−1327−465×i
Simplify
−1327+3365i
x=−1327+3365i
x=−1327+3365ix=1056−56−3265×i
Simplify the expression
More Steps

Evaluate
x=1056−56−3265×i
Divide the terms
More Steps

Evaluate
1056−56−3265×i
Rewrite the expression
10568(−7−465×i)
Cancel out the common factor 8
132−7−465×i
Use b−a=−ba=−ba to rewrite the fraction
−1327+465×i
Simplify
−1327−3365i
x=−1327−3365i
x=−1327+3365ix=−1327−3365i
Solution
x1=−1327−3365i,x2=−1327+3365i
Alternative Form
x1≈−0.053˙0˙−0.244311i,x2≈−0.053˙0˙+0.244311i
Show Solution
