Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
p1=1961−1226,p2=1961+1226
Alternative Form
p1≈−0.173542,p2≈0.183746
Evaluate
−8×14p×7p=−25−8p
Multiply
More Steps

Evaluate
−8×14p×7p
Multiply the terms
More Steps

Evaluate
8×14×7
Multiply the terms
112×7
Multiply the numbers
784
−784p×p
Multiply the terms
−784p2
−784p2=−25−8p
Move the expression to the left side
−784p2+25+8p=0
Rewrite in standard form
−784p2+8p+25=0
Multiply both sides
784p2−8p−25=0
Substitute a=784,b=−8 and c=−25 into the quadratic formula p=2a−b±b2−4ac
p=2×7848±(−8)2−4×784(−25)
Simplify the expression
p=15688±(−8)2−4×784(−25)
Simplify the expression
More Steps

Evaluate
(−8)2−4×784(−25)
Multiply
More Steps

Multiply the terms
4×784(−25)
Rewrite the expression
−4×784×25
Multiply the terms
−78400
(−8)2−(−78400)
Rewrite the expression
82−(−78400)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
82+78400
Evaluate the power
64+78400
Add the numbers
78464
p=15688±78464
Simplify the radical expression
More Steps

Evaluate
78464
Write the expression as a product where the root of one of the factors can be evaluated
64×1226
Write the number in exponential form with the base of 8
82×1226
The root of a product is equal to the product of the roots of each factor
82×1226
Reduce the index of the radical and exponent with 2
81226
p=15688±81226
Separate the equation into 2 possible cases
p=15688+81226p=15688−81226
Simplify the expression
More Steps

Evaluate
p=15688+81226
Divide the terms
More Steps

Evaluate
15688+81226
Rewrite the expression
15688(1+1226)
Cancel out the common factor 8
1961+1226
p=1961+1226
p=1961+1226p=15688−81226
Simplify the expression
More Steps

Evaluate
p=15688−81226
Divide the terms
More Steps

Evaluate
15688−81226
Rewrite the expression
15688(1−1226)
Cancel out the common factor 8
1961−1226
p=1961−1226
p=1961+1226p=1961−1226
Solution
p1=1961−1226,p2=1961+1226
Alternative Form
p1≈−0.173542,p2≈0.183746
Show Solution
