Question
Simplify the expression
256a+240−48a2
Evaluate
−8(5−a)×2(−3a−3)−8(−8a)
Multiply the terms
−16(5−a)(−3a−3)−8(−8a)
Multiply the numbers
More Steps

Evaluate
8(−8)
Multiplying or dividing an odd number of negative terms equals a negative
−8×8
Multiply the numbers
−64
−16(5−a)(−3a−3)−(−64a)
Rewrite the expression
−16(5−a)(−3a−3)+64a
Expand the expression
More Steps

Calculate
−16(5−a)(−3a−3)
Simplify
More Steps

Evaluate
−16(5−a)
Apply the distributive property
−16×5−(−16a)
Multiply the numbers
−80−(−16a)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−80+16a
(−80+16a)(−3a−3)
Apply the distributive property
−80(−3a)−(−80×3)+16a(−3a)−16a×3
Multiply the numbers
More Steps

Evaluate
−80(−3)
Multiplying or dividing an even number of negative terms equals a positive
80×3
Multiply the numbers
240
240a−(−80×3)+16a(−3a)−16a×3
Multiply the numbers
240a−(−240)+16a(−3a)−16a×3
Multiply the terms
More Steps

Evaluate
16a(−3a)
Multiply the numbers
−48a×a
Multiply the terms
−48a2
240a−(−240)−48a2−16a×3
Multiply the numbers
240a−(−240)−48a2−48a
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
240a+240−48a2−48a
Subtract the terms
More Steps

Evaluate
240a−48a
Collect like terms by calculating the sum or difference of their coefficients
(240−48)a
Subtract the numbers
192a
192a+240−48a2
192a+240−48a2+64a
Solution
More Steps

Evaluate
192a+64a
Collect like terms by calculating the sum or difference of their coefficients
(192+64)a
Add the numbers
256a
256a+240−48a2
Show Solution

Factor the expression
16(16a+15−3a2)
Evaluate
−8(5−a)×2(−3a−3)−8(−8a)
Multiply the terms
−16(5−a)(−3a−3)−8(−8a)
Multiply the numbers
More Steps

Evaluate
8(−8)
Multiplying or dividing an odd number of negative terms equals a negative
−8×8
Multiply the numbers
−64
Evaluate
−64a
−16(5−a)(−3a−3)−(−64a)
Rewrite the expression
−16(5−a)(−3a−3)+64a
Simplify
More Steps

Evaluate
−16(5−a)(−3a−3)
Simplify
More Steps

Evaluate
−16(5−a)
Apply the distributive property
−16×5−16(−a)
Multiply the terms
−80−16(−a)
Multiply the terms
−80+16a
(−80+16a)(−3a−3)
Apply the distributive property
−80(−3a)−80(−3)+16a(−3a)+16a(−3)
Multiply the terms
More Steps

Evaluate
−80(−3)
Multiplying or dividing an even number of negative terms equals a positive
80×3
Multiply the numbers
240
240a−80(−3)+16a(−3a)+16a(−3)
Multiply the terms
More Steps

Evaluate
−80(−3)
Multiplying or dividing an even number of negative terms equals a positive
80×3
Multiply the numbers
240
240a+240+16a(−3a)+16a(−3)
Multiply the terms
More Steps

Evaluate
16a(−3a)
Multiply the numbers
−48a×a
Multiply the terms
−48a2
240a+240−48a2+16a(−3)
Multiply the terms
More Steps

Evaluate
16(−3)
Multiplying or dividing an odd number of negative terms equals a negative
−16×3
Multiply the numbers
−48
240a+240−48a2−48a
240a+240−48a2−48a+64a
Calculate the sum or difference
More Steps

Evaluate
240a−48a+64a
Collect like terms by calculating the sum or difference of their coefficients
(240−48+64)a
Calculate the sum or difference
256a
256a+240−48a2
Solution
16(16a+15−3a2)
Show Solution

Find the roots
a1=38−109,a2=38+109
Alternative Form
a1≈−0.813436,a2≈6.146769
Evaluate
−8(5−a)×2(−3a−3)−8(−8a)
To find the roots of the expression,set the expression equal to 0
−8(5−a)×2(−3a−3)−8(−8a)=0
Multiply the terms
−16(5−a)(−3a−3)−8(−8a)=0
Multiply the numbers
More Steps

Evaluate
8(−8)
Multiplying or dividing an odd number of negative terms equals a negative
−8×8
Multiply the numbers
−64
−16(5−a)(−3a−3)−(−64a)=0
Rewrite the expression
−16(5−a)(−3a−3)+64a=0
Calculate
More Steps

Evaluate
−16(5−a)(−3a−3)+64a
Expand the expression
More Steps

Calculate
−16(5−a)(−3a−3)
Simplify
(−80+16a)(−3a−3)
Apply the distributive property
−80(−3a)−(−80×3)+16a(−3a)−16a×3
Multiply the numbers
240a−(−80×3)+16a(−3a)−16a×3
Multiply the numbers
240a−(−240)+16a(−3a)−16a×3
Multiply the terms
240a−(−240)−48a2−16a×3
Multiply the numbers
240a−(−240)−48a2−48a
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
240a+240−48a2−48a
Subtract the terms
192a+240−48a2
192a+240−48a2+64a
Add the terms
More Steps

Evaluate
192a+64a
Collect like terms by calculating the sum or difference of their coefficients
(192+64)a
Add the numbers
256a
256a+240−48a2
256a+240−48a2=0
Rewrite in standard form
−48a2+256a+240=0
Multiply both sides
48a2−256a−240=0
Substitute a=48,b=−256 and c=−240 into the quadratic formula a=2a−b±b2−4ac
a=2×48256±(−256)2−4×48(−240)
Simplify the expression
a=96256±(−256)2−4×48(−240)
Simplify the expression
More Steps

Evaluate
(−256)2−4×48(−240)
Multiply
More Steps

Multiply the terms
4×48(−240)
Rewrite the expression
−4×48×240
Multiply the terms
−46080
(−256)2−(−46080)
Rewrite the expression
2562−(−46080)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
2562+46080
Rewrite the expression
65536+46080
Add the numbers
111616
a=96256±111616
Simplify the radical expression
More Steps

Evaluate
111616
Write the expression as a product where the root of one of the factors can be evaluated
1024×109
Write the number in exponential form with the base of 32
322×109
The root of a product is equal to the product of the roots of each factor
322×109
Reduce the index of the radical and exponent with 2
32109
a=96256±32109
Separate the equation into 2 possible cases
a=96256+32109a=96256−32109
Simplify the expression
More Steps

Evaluate
a=96256+32109
Divide the terms
More Steps

Evaluate
96256+32109
Rewrite the expression
9632(8+109)
Cancel out the common factor 32
38+109
a=38+109
a=38+109a=96256−32109
Simplify the expression
More Steps

Evaluate
a=96256−32109
Divide the terms
More Steps

Evaluate
96256−32109
Rewrite the expression
9632(8−109)
Cancel out the common factor 32
38−109
a=38−109
a=38+109a=38−109
Solution
a1=38−109,a2=38+109
Alternative Form
a1≈−0.813436,a2≈6.146769
Show Solution
