Question
Solve the inequality
Solve the inequality by testing the values in the interval
Solve the inequality by separating into cases
Solve for x
x∈(−∞,0)∪(305936,+∞)
Evaluate
−8(x−3)×6×13x<−2x×7x
Multiply
More Steps

Evaluate
−8(x−3)×6×13x
Multiply the terms
More Steps

Evaluate
8×6×13
Multiply the terms
48×13
Multiply the numbers
624
−624(x−3)x
Multiply the terms
−624x(x−3)
−624x(x−3)<−2x×7x
Multiply
More Steps

Evaluate
−2x×7x
Multiply the terms
−14x×x
Multiply the terms
−14x2
−624x(x−3)<−14x2
Move the expression to the left side
−624x(x−3)−(−14x2)<0
Subtract the terms
More Steps

Evaluate
−624x(x−3)−(−14x2)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−624x(x−3)+14x2
Expand the expression
More Steps

Calculate
−624x(x−3)
Apply the distributive property
−624x×x−(−624x×3)
Multiply the terms
−624x2−(−624x×3)
Multiply the numbers
−624x2−(−1872x)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−624x2+1872x
−624x2+1872x+14x2
Add the terms
More Steps

Evaluate
−624x2+14x2
Collect like terms by calculating the sum or difference of their coefficients
(−624+14)x2
Add the numbers
−610x2
−610x2+1872x
−610x2+1872x<0
Rewrite the expression
−610x2+1872x=0
Factor the expression
More Steps

Evaluate
−610x2+1872x
Rewrite the expression
−2x×305x+2x×936
Factor out −2x from the expression
−2x(305x−936)
−2x(305x−936)=0
When the product of factors equals 0,at least one factor is 0
−2x=0305x−936=0
Solve the equation for x
More Steps

Evaluate
−2x=0
Change the signs on both sides of the equation
2x=0
Rewrite the expression
x=0
x=0305x−936=0
Solve the equation for x
More Steps

Evaluate
305x−936=0
Move the constant to the right-hand side and change its sign
305x=0+936
Removing 0 doesn't change the value,so remove it from the expression
305x=936
Divide both sides
305305x=305936
Divide the numbers
x=305936
x=0x=305936
Determine the test intervals using the critical values
x<00<x<305936x>305936
Choose a value form each interval
x1=−1x2=2x3=4
To determine if x<0 is the solution to the inequality,test if the chosen value x=−1 satisfies the initial inequality
More Steps

Evaluate
−624(−1)(−1−3)<−14(−1)2
Simplify
More Steps

Evaluate
−624(−1)(−1−3)
Subtract the numbers
−624(−1)(−4)
Any expression multiplied by 1 remains the same
−624×4
Multiply the terms
−2496
−2496<−14(−1)2
Simplify
More Steps

Evaluate
−14(−1)2
Evaluate the power
−14×1
Any expression multiplied by 1 remains the same
−14
−2496<−14
Check the inequality
true
x<0 is the solutionx2=2x3=4
To determine if 0<x<305936 is the solution to the inequality,test if the chosen value x=2 satisfies the initial inequality
More Steps

Evaluate
−624×2(2−3)<−14×22
Simplify
More Steps

Evaluate
−624×2(2−3)
Subtract the numbers
−624×2(−1)
Any expression multiplied by 1 remains the same
624×2
Multiply the numbers
1248
1248<−14×22
Multiply the terms
More Steps

Evaluate
−14×22
Evaluate the power
−14×4
Multiply the numbers
−56
1248<−56
Check the inequality
false
x<0 is the solution0<x<305936 is not a solutionx3=4
To determine if x>305936 is the solution to the inequality,test if the chosen value x=4 satisfies the initial inequality
More Steps

Evaluate
−624×4(4−3)<−14×42
Simplify
More Steps

Evaluate
−624×4(4−3)
Subtract the numbers
−624×4×1
Rewrite the expression
−624×4
Multiply the numbers
−2496
−2496<−14×42
Multiply the terms
More Steps

Evaluate
−14×42
Evaluate the power
−14×16
Multiply the numbers
−224
−2496<−224
Check the inequality
true
x<0 is the solution0<x<305936 is not a solutionx>305936 is the solution
Solution
x∈(−∞,0)∪(305936,+∞)
Show Solution
